
Yannick Mahugnon Assogba
B.Sc. Computer Science (Hons)
Concordia University, Montreal June 2006

Creative Networks:
Socio-Technical Systems for Loosely Bound Cooperation 

Deb Roy
Chair, Department Committee on Graduate Studies
Program in Media Arts and Sciences

Judith Donath
Director of Sociable Media Group, MIT Media Lab
Thesis Supervisor

Yannick Assogba
Program in Media Arts and Sciences
August 7, 2009

Accepted

certified 

Author

Submitted to the Program in Media Arts and Sciences, School 
of Architecture and Planning, 
in Partial Fulfillment of the Requirements for the Degree of 
Master of Science in Media Arts and Sciences at the
Massachusetts Institute of Technology.

September 2009

© 2009 Massachusetts Institute of Technology. All rights reserved





This thesis introduces a programming environment entitled Share 
that is designed to support and encourage loosely bound cooperation between 
individuals within communities of practice through the sharing of code. 
Loosely bound cooperation refers to the opportunity members of communities 
have to assist and share resources with one another while maintaining their 
autonomy and independent practice. We contrast this model with forms 
of collaboration that enable large numbers of distributed individuals to 
collaborate on large scale works where they are guided by a shared vision of 
what they are collectively trying to achieve.

Our hypothesis is that providing fine-grained, publicly visible 
attribution of code sharing activity within a community can provide socially 
motivated encouragement for participation as well as pragmatic value of 
being able to better track downstream use and changes to contributions that 
an individual makes.

We shall present a discussion of loosely bound collaborative practice 
in various creative domains and the technological and social factors that 
contribute to the salience of these forms of cooperation today as well as 
discussing the motivational factors associated with open source development 
and how they differ in the case of cooperating individuals who do not share 
a project. We will also present an overview of the design of our tool and the 
objectives that guided its design and a discussion of a small-scale deployment 
of our prototype among members of a particular community of practice. 

Abstract

Yannick Mahugnon Assogba
B.Sc. Computer Science (Hons)
Concordia University, Montreal June 2006

Creative Networks:
Socio-Technical Systems for Loosely Bound Cooperation 

Submitted to the Program in Media Arts and Sciences, School 
of Architecture and Planning, 
in Partial Fulfillment of the Requirements for the Degree of 
Master of Science in Media Arts and Sciences at the
Massachusetts Institute of Technology.

September 2009

© 2009 Massachusetts Institute of Technology. All rights reserved

SuperviSor  Judith Donath
title   Director of Sociable Media Group, MIT Media Lab





Yannick Assogba

Creative Networks:
Socio-Technical Systems for Loosely Bound Cooperation 

Mitchel Resnick
LEGO Papert Professor of Media Arts and Sciences 
Program in Media Arts and Sciences, MIT 

theSiS reAder 





Yannick Assogba

Creative Networks:
Socio-Technical Systems for Loosely Bound Cooperation 

David P. Reed
Adjunct Professor 
Program in Media Arts and Sciences, MIT

theSiS reAder 





Acknowledgements

Above all my thanks go to God, for bringing me to this 
place and through this process, for peace and provision, inspiration 
and ability, for me, this work would not have been possible without 
Him. I would also like to thank my advisor Judith Donath, for 
education and encouragement, guidance and critique, freedom 
and fun—I have grown greatly as a researcher and critical thinker 
in my time here. My appreciation also goes out to the rest of the 
Sociable Media Group that I had the pleasure of knowing and 
working with, to Aaron, Alex, Drew and Dietmar, thanks for 
providing a wonderful and diverse intellectual environment and 
fun times in and out of the lab. To other friends and colleagues 
around and beyond the lab, Emily, Kate, Eric, Seth, Siggi, Simon, 
Ana-Luisa, Doug, Sajid, Ken, and so many others, thanks for your 
company, help, and general awesomeness.

I would like also to express my gratitude to my thesis 
readers David Reed and Mitchel Resnick for their feedback, 
perspective, and careful eyes. My appreciation also goes to the 
many members of the Media Lab that I have had the pleasure 
of learning from; it has been a pleasure being in such a diverse 
and passion-filled environment. Also, this thesis draws on ideas 
from so many others, almost all strangers, most are listed in the 
bibliography but I would like to thank you all here too. 

Thanks to Jason Lewis + Family, for friendship, advice, 
encouraging me to come here and for being like family to me 
when I’m so far from my own.

Finally to my family, thanks for your love, support, and 
prayers. My love and sincerest appreciation go to you. This thesis is 
dedicated to my mother Lucile, my greatest source of inspiration 
when I feel weary.



AbStrAct 3

AcknowledgementS 9

introduction 13

Design Proposal & Hypothesis 14
Why Art? 15

Outline 16

SAmpling & collAborAtive prActice in culturAl 
production: An Art-hiStoricAl perSpective 18

Artist Collectives 19
The Impressionists 19
De Stijl 22

Sampling  24
Literature 25
Music 26
DJ Culture & Intertextuality in Hip-Hop 27

creAtivity & copyright lAw: tenSionS of ownerShip 32

Fallout 34
Plunderphonics 34
 YouTube 35
What about Fair Use? 36

Copyleft 39

new economieS: the ShAring economy & commonS  
bASed peer production 40

Political Affordances of Network Technology 41

Reward & Motivation in Free and Open Source Software 42

Loosely Bound Cooperation 44
Development Across Project Boundaries 45
Challenges Across Project Boundaries 46

Processing, The Community; Forums and Other Existing Tools 48

Table of Contents



relAted work 48

Scratch 52

OPENSTUDIO 54

GitHub 55

deSign & implementAtion 56

Share Server 60

Share Client 63
File Browser 64
Code Search 66
Editor 67
Permissions 70
Explicit References 70
Comments  71
Bookmarks 72
Synchronization 74
The Network Browser 75
Runtime 79
Security Concerns 79

the ShAre experiment: reSultS & diScuSSion 82

Experiment Design 83

Recruitment and Participant Demographics 84

Prior Code Sharing Experience 86

Experience Using Share 90
Quantitative data 90
Explicit (@saw) References 95
Survey Response 96

concluSion & future work 104

Future Work 107
Design Opportunities 107
Research Questions 108

Appendix A 110

bibliogrAphy 118





13

This thesis concerns itself with new opportunities available 
to creative individuals to locate themselves in larger and larger 
communities mediated by networked technology and the opportunity 
that presents for greater interplay between the individual and socio-
contextual aspects of creative endeavor. Over the last several years we 
have seen the growth in ability of digital communication networks 
to organize the actions of large numbers of distributed individuals 
in performing work at a scale more traditionally associated with 
that of companies and corporations. Systems (both their social and 
technical components) such as Wikipedia, the development model 
of open source software such as GNU/Linux, and social computing 
experiments such as NASA Clickworkers (Kanefsky, Barlow & 
Gulick, 2001) or the ESP game (von Ahn & Dabbish, 2004) are 
but a few examples of how the work of individuals collaborating 
at immense scale is synthesized to produce something that is in a 
sense greater than the sum of its parts. However for the most part 
these projects and many other ones like them are ones in which 
participants have a shared idea of what they are trying to create. Be 
it an encyclopedia or an operating system there is a shared goal that 

Chapter 1. Introduction

“Bernard of Chartres used to say that we are like dwarfs on the shoulders 
of giants, so that we can see more than they, and things at a greater 
distance, not by virtue of any sharpness of sight on our part, or any physical 
distinction, but because we are carried high and raised up by their giant size.”   
     — John of Salisbury (1159)



14

all participants are working towards. We seek to look at the design of 
systems that allows individuals to pursue independent goals yet still be 
able to take advantage of the properties of the network to help each 
other along the way. We refer to this form of collaboration as loosely-
bound cooperation.

Central to this thesis is the idea that individual creativity 
is borne out of a rich heritage of existing work and a context that 
includes the creative output of the communities to which we belong. 
Fischer et al. (2005) argue that while we typically hold an image 
of the creative individual as a “lone thinker” laboring at his art in 
isolation until it is perfected and ready to be shown to the world, this 
is not the whole picture; we must take into account the intellectual 
context in which our creative talent operates in considering what 
makes us such capable and interesting creatures. This intellectual 
context is inherently a social one, providing feedback, validation and 
raw material from which new creative output is synthesized. This is 
not to discount or belittle the unique contribution brought by the 
individual, but rather suggests that the relationship between ‘genius’ 
(individual) and ‘inspiration’ (socio-contextual) is a complementary 
one, each emerging from the other, and that there is opportunity to 
build tools that support this relationship. 

deSign propoSAl & hypotheSiS

We propose a novel programming environment geared 
towards supporting loosely-bound cooperation between programmers 
within communities of practice; our prototype is initially targeted at 
programmers using the processing programming language (Reas & 
Fry, 2007), a language geared towards multimedia artists, designers 
and others interested in using code as a central part of their practice. 
Our tool does this by sharing all the code written in it with all other 
members of the community and also tracking its reuse, providing 
fine grained attribution of where code came from as well publicly 
visualizing the network of links created from the patterns of re-
appropriation. In summary the system provides:

Automatic Code Sharing. As code is written it is 
automatically distributed to all other users of the system.

Tracking Copy & Paste.  As code is re-appropriated its 



15

movement is tracked making it possible to see where any of the 
content in a particular file came from.

Visualizing Relationships. The environment will 
provide an interactive visualization of the entities within the system 
(users and code artifacts) and the relationships between them. The 
visualization allows users to navigate the social context around code 
artifacts.

 Explicit reference and linking of artifacts. The 
system will provide a means of making explicit references to other 
users or code artifacts for relationships that are not captured by the 
automatic copy-paste tracking (e.g. those indicating inspiration).

Our hypothesis is that we can leverage public display of 
attribution to provide reward for, and motivate participation in, code-
sharing based cooperation between individuals who are in pursuit 
of independent goals. The central questions that we are asking with 
respect to our design include:

What rewards does the visualization of attribution 1. 
provide to the original contributor? Do these rewards 
lower the barrier towards openly sharing ones code?

Are individuals able to track the re-appropriation of 2. 
code they have contributed? If so what are the benefits to 
doing so? 

Does working in such a system disrupt their regular work 3. 
practice? Can users program without being encumbered 
by the notion of participating in a community? 

Why Art?

So why situate a study like this one within the arts? We do 
so because we believe artistic practice provides strong examples of 
individuals working towards their own goals without a shared task 
or goal, yet often sharing a context in which that work is produced. 
We believe that the strong relationship between artists and the code 
they produce makes this a suitable test bed to investigate these issues 
around motivating loosely bound cooperation.



16

outline

This thesis can roughly be divided into two parts, in the first 
part we present a broad overview of the history of sampling and 
collaborative practice within the realm of art production and the 
effect that technology has had on the nature of those practices. We 
then take a look at the tensions between contemporary sampling 
and remix practice and modern copyright and intellectual property 
law. We also discuss the emergence of new frameworks for exchange 
that better support these collaborative practices, particularly looking 
at the salience of  ‘sharing economies’ and new models for non-
market production and distribution that are enabled by modern 
communications technologies. Finally we survey some of the reasons 
individuals choose to participate in these new economies and the 
benefits and trade-offs in doing so, we will also further unpack what 
we mean by loosely-bound cooperation by contrasting it with the 
model of mass collaboration that is enabled by similar technologies. 

The second part of the thesis starts with a look at a set 
of existing projects and tools that serve as exemplars for the kind 
of system we propose to build, we shall then describe the design 
and functionality of the prototype that we created and discuss our 
initial user study and the feedback received from our users. We 
then conclude the thesis and look at some future directions that the 
current research opens up. 



17



18

This chapter aims to provide a brief discussion on the history 
of sampling and other collaborative practices in the arts; we do this 
for a number of reasons. Firstly to advance an argument that as a 
means of artistic and cultural production its results are not inferior 
to what we may conceive of as ‘original’. Secondly to see that it has 
historically been part of the practice of many artists and hopefully 
diminishing conceptions we may have that the product of art and 
more generally creativity is the product of focused individual genius 
bereft of the context (particularly social) that played a part in its 
creation. Thirdly to provide a basis to discuss the structural changes 
brought about within these practices from the proliferation of cheap, 
fast digital communication networks. We will make brief excursions 
into three main areas, Visual Arts, Literature and Music to draw 
examples that relate to sampling and collective practice over the last 
century or so.

Chapter 2. Sampling & Collaborative Practice in 

Cultural Production: An Art-Historical Perspective

“Immature poets imitate; mature poets steal; bad poets deface what they 
take, and good poets make it  into something better, or at least something 
different.” — T.S. Elliot



19

ArtiSt collectiveS

The visual arts provide great examples of collaborative 
practice amongst artists, with numerous, schools, movements and 
looser collectives and associations. We draw comparison between 
these ‘schools’ and the notion of communities of practice advanced by 
Lave and Wenger (1991), which describes a group of individuals with 
a shared set of practices or tools working within a community. Our 
discussion here focuses on the Impressionist and De Stijl movements.

The Impressionists

The first impressionists were a loosely affiliated group of 
artists working around Paris in the 1860’s. In “Impressionists Side by 
Side” art historian Barbara Ehrlich White (1996) documents the 
“friendships, rivalries and artistic exchanges” of some of the most 
celebrated impressionist painters, including Degas, Monet, Cezanne 
and Manet. In the book White examines their relationships in terms 
of overlapping pairs of working relationships. Their collaborative 
practices included working in each other’s presence, painting the same 
subject (literally painting side by side), sometimes copying and in rare 
instances correcting each other’s work1, as well as overt collaboration 
on projects. Indeed some critics of the day suggested their art was 
too similar, however White insists that “the Impressionists strove for 
individuality” asserting (and demonstrating in the book) that “Each 
had different ideas, approaches, attitudes, and contributions”. The 
relationships and collaborative practice of the artists allowed them to 
develop their craft and progress the art form by learning from each 
other. In the case of the female artists, the relationships with male 
counterparts allowed them to receive attention to their work that 
would have been harder to garner given the nature of society at the 
time. Of their collaborations White says

“It is not often realized how much these men and women 
relied on each other for camaraderie, support, inspiration, 
ideas and techniques. They not only learned from but also 
competed with each other and their art changed as a result. 
Without these friendly rivalries each artists work would not 

1 Both Degas and Monet each corrected a painting by Cassatt and Morisot 
respectively, that the latter had sent to be exhibited (White, 1996 pp 3)



20

have been as rich … Working together led them to impor-
tant breakthroughs in style and theme; this resulted in ar-
tistic growth for all of the painters and in a great number of 
works of art.” — (White, 1996)

Figure 2. Morisot, On the Balcony, c. 1871-72, 
Oil on canvas 23⅝ × 19⅝" (60 × 50 cm). 
Private Collection. Source: White (1996).

Figure 1. Manet, Gare Saint-Lazare, d. 
1873, Oil on canvas 36¾ × 45" (93 × 114 cm). 
National Gallery of Art; Gift of Horace 
Havemeyer in memory of his mother, 
Louisine W. Havemeyer. Source: White 
(1996).



21

Figure 3. Manet, Camille and Jean in the 
Garden (or The Monet Family in Their Garden 
at Argenteuil), 1874, Oil on canvas 24 × 39¼" 
(41 × 99.7 cm). The metropolitan Museum 
of Art, New York; Bequest of Joan Whitney 
Payson. Source: White (1996).

Figure 4. Renoir, Portrait of Cammille and Jean 
in the Garden at Argenteuil, 1874, Oil on canvas 
19⅜ × 26¾" (49.2 × 67.9 cm). National Gallery 
of Art, Washington; Alisa Mellon Bruce 
Collection. Source: White (1996).

Figure 5. Cézanne, House and Tree near the 
Read of the Hermitage, Pontoise, 1874, Oil on 
canvas 25⅝ × 21¼" (66.2 × 53.3.9 cm). Private 
Collection. Source: White (1996).

Figure 6. Pissarro, The Road of the Hermitage, 
Pontoise, d. 1874, Oil on canvas 18 × 15" (45.7 × 
38.1 cm). Private Collection. Source: White 
(1996).



22

De Stijl

De Stijl is the name of a loosely affiliated group of artists 
including painters (Mondrian, Van Doesburg) and architects (Oud, 
Rietveld, Wils), whose work was influential in the development of 
modern graphic design and international style architecture (Friedman, 
1982). Formed in World War 1 Holland, the members of De Stijl did 
not all work in close physical proximity with each other, indeed many 
of them never met and barely knew each other personally (Overy, 
1991 pp 7), communicating and sharing their work mainly through the 
monthly publication of a journal, “De Stijl” that gave the association 
its name. However they shared a common philosophy as to the 
form and function of their art and their work is characterized by 
their shared palette of straight lines, right angles, the use of primary 
colors red, blue and yellow (in addition to the ‘non-colors’ white, 
black and grey). Their collaboration demonstrates the movement and 
development of ideas even across genres.

Figure 7 (above). Mondrian P. Composition 
with Red, Blue, and Yellow , 1930, Oil on 
canvas 46 × 46 cm. Kunsthaus Zurich. 
Retrieved July 15, 2009 from Artstor. http://
library.artstor.org/library/secure/ViewImag
es?id=%2FThWdC8hIywtPygxFTx5RnguX
X0pfFk%3D

Figure 8 (right). Rietveld G. Red-Blue 
Chair, design 1917-1918, c. 1974, deal wood, 
plywood, ebony aniline dye 40 × 20 × 27". 
The Minneapolis Institute of Arts; The 
Modernism Collection, Gift of Norwest 
Bank Minnesota. Retrieved July 15, 2009 
from Artstor. http://library.artstor.org/
library/secure/ViewImages?id=8D1Efjk2O
DA0KyYrZD5%2FXnVHXnogd1t7fSY%3D



23

There are countless other examples of the importance of the 
artists collective in the development of the artists and the art form, 
from the Pre-Raphaelite Brotherhood and Der Blaue Reiter to Dada 
and Fluxus. The notion of artist collaboration is certainly not new and 
likely not even controversial, it’s importance however, is sometimes 
overlooked. 

Figure 9 (far left). Domela C. 
Construction, 1929, glass, painted 
glass, painted metal, chromeplated 
brass, painted wood 89.9 × 75.2 × 4.2 
cm. Collection Hirshborn Museum 
and Sculpture Garden, Smithsonian 
Institution. Source: Friedman (1982)

Figure 10 (left). Rietveld G. End Table, 
1923, painted wood 61.6 × 48.9 × 48.9 
cm. Collection Stedelijk Museum, 
Amsterdam. Source: Friedman (1982)

Figure 11 (left). Rietveld G. Schröder house, 
1924–5, restored 1985–7. Source: Overy 
(1991)



24

SAmpling 

A process in which a sound is taken directly from a recorded medium and 
transposed onto a new recording. (Fulford-Jones, 2009)

Among many others Manovich (2005, 2007) observes that 
cultural production in the internet age is increasingly comprised of 
practices that re-use, re-appropriate and re-contextualize existing 
media in the creation of new cultural content. In 2005 he stated “In 
most cultural fields today we have a clear-cut separation between 
libraries of elements designed to be sampled – stock photos, graphic 
backgrounds, music, software libraries – and the cultural objects 
that incorporate these elements”, he then asks “Will the separation 
between libraries of samples and “authentic” cultural works blur in the 
future?” To look around now and answer that question one is forced 
to say, yes (though our legal regulations are still catching up); across 
diverse media from image and moving image to music, everything is 
up for grabs in the construction of new works, Manovich’s metaphor 
of ‘database’ (Manovich, 2001) previously applied to film and new-
media can be increasingly applied to all forms of cultural production, 
high and low

Sampling as a mechanism for collaborative practice holds 
particular salience with respect to this thesis as it is the method 
of collaboration most directly supported by our tool. As a method 
it has a long history, likely stretching as far back as the means for 
fixed storage and reproduction of material, and certainly well before 
the ‘Internet age’. While we could draw even more examples from 
the visual arts to demonstrate this, particularly when we look at 
collage-based work. We will use examples from literature to show 
its antiquity, and examples from contemporary music to examine 
how technology changes the scales (across time and space) at which 
samples are transmitted and reused



25

Literature

“Literature has always been a crucible in which familiar themes are 
continually recast”    — Michael Maar

  Author Jonathan Lethem’s essay The Ecstasy of Influence: A 
Plagiarism Mosaic (Lethem, 2007) begins with an account that almost 
makes Victor Nabokov to be a plagiarist, describing the plot of a 
manuscript by German author Heinz von Lichberg entitled Lolita 
that bears striking resemblance to its more well known namesake, and 
which had been published forty years earlier. Michael Maar, author 
of a book exploring the relationship between the two works, suggests 
that it is however not appropriate to consider Nabokov a plagiarist, 
suggesting that the works differ such that “Nothing of what we admire 
in [Nabokov’s] Lolita is already to be found in the tale; the former is in no 
way deducible from the latter” (Maar, 2005). 

Lethem’s essay makes a case, historical, contemporary 
and visceral (many of the words in his essay are in fact lifted from 
others—he gives a key at the end of the essay), as to how natural acts 
of appropriation like these are. He writes

“Most artists are brought to their vocation when their own 
nascent gifts are awakened by the work of a master. That is 
to say, most artists are converted to art by art itself. Finding 
one’s voice isn’t just an emptying and purifying oneself of the 
words of others but an adopting and embracing of filiations, 
communities, and discourses. Inspiration could be called in-
haling the memory of an act never experienced. Invention, it 
must be humbly admitted, does not consist in creating out of 
void but out of chaos. Any artist knows these truths, no mat-
ter how deeply he or she submerges that knowing.” (Lethem, 
2007) 

When we look at 16th century European literature it seems 
that it was common and accepted practice for works of literature 
to borrow, ideas, plots and phrases from other works of the day 
and of antiquity without reference or attribution. Since at least the 
eighteenth century, scholars have been investigating the sources for 
Shakespeare’s plots and have had an understanding that most of the 



26

underlying stories for his poetry were not created by him (Metz, 1989, 
pp xi). Indeed Geoffrey Bullough (1901-1982), Professor of English 
Language and Literature, Kings College, Cambridge has published 
an 8 volume series on Shakespeare’s sources (Bullough, 1957). At 
least three examples of the “pound of flesh” demanded by Shylock 
are found in works prior to The Merchant of Venice, (The Jew, Zelauto 
and Il Pecorone (Muir, 1978 pp 86–90)). The story of Romeo and Juliet 
exists prior to Shakespeare’s version as an English translation of a 
French translation of an Italian adaptation of another Italian story, 
the story remaining fairly consistent between all the versions, with 
various characters being added along the way. Scholars suggest that 
Shakespeare’s main source was likely the 1562 poem, The Tragicall 
Historye of Romeus and Juliet by Arthur Brooke (Muir, 1978 pp 39).

 Literary criticism has recognized this practice using, among 
others, the term intertextuality, the shaping of one text by another, 
(Kristeva, 1986), such as that visible between James Joyce’s Ulysses and 
Homer’s Odyssey (Attridge, 2004 pp 122). We see in these examples 
masterful use of existing cultural content in the production of 
something fresh and new. We do not seek to diminish the immense 
creativity brought to the table by individuals who created these works; 
we merely seek to highlight that it was in their common practice to s 
sample when necessary to complete their work.

Music

Give me two turntables and I’ll make you a universe. — DJ Spooky That 
Subliminal Kid

One art form that is arguably in the forefront of discussions 
on issues and rights with respect to the practice of sampling to create 
new works is music. Enabled by digital representations and tools that 
transform sound itself into a malleable raw material to be used in the 
creation of new work, audio culture has certainly been affected by 
sampling practice. Sound art and music also provide clear examples 
of how technology has allowed collaborative practice to transcend 
geography 

In 1937 composer John Cage writes. 

“I believe that the use of noise to make music will continue 



27

and increase until we reach a music produced through the 
aid of electrical instruments which will make available 
for musical purposes any and all sounds that can be heard. 
Photoelectric, film, and mechanical mediums for the syn-
thetic production of music will be explored. Whereas, in the 
past, the point of disagreement has been between dissonance 
and consonance, it will be, in the immediate future, between 
noise and so-called musical sounds. The present methods of 
writing music, principally those which employ harmony and 
its reference to particular steps in the field of sound, will be 
inadequate for the composer who will be faced with the en-
tire field of sound.” [Emphasis Added] (Cox, Warner, 2004 
pp 25)

Cage sought to open up the palette of sounds available in 
the making of music. Cage and futurists such as Luigi Russolo2 
problematize the term “Music” by using the word “noise” to refer 
to sounds in a general way without the restrictions enforced by 
the musical community of his time (and still present in music 
departments today). He saw a future, enabled by a new set of tools, in 
which all sound would be available for use in the creation of the new 
music. We are indeed faced with that time now, digital tools easily 
allow any sound to be captured, manipulated and re-appropriated in 
the creation of new work.

DJ Culture & Intertextuality in Hip-Hop

Prefigured by Laszlo Moholy-Nagy’s exhortation to 
transform the phonograph into a tool for production as opposed 
to merely re-production (Cox, Warner 2007 pp. 329), DJ Culture is 
the modern configuration of the futurists’ vision translated into the 
vernacular. It is exemplified by, yet by no means exclusive to, Hip-
Hop, a genre whose origins lie with a group of individuals, DJ’s, such 
as Kool Herc, GrandMaster Flash and Afrika Bambaataa, who were 
isolating breaks and beats from existing records and transforming 

2 Luigi Russolo was an Italian futurist who wrote a seminal manifesto 
entitled “The Art of Noises” in 1913 in which he called for the orchestra of the future 
to incorporate the entire palette of noise-sounds that were emerging at the time. 
Reacting to the evolving auditory ecology of Europe after the industrial revolution 
that was filled with new exciting sounds of machinery, he saw an opportunity and an 
imperative to incorporate these new sounds in the service of culture.



28

them through cuts, scratches and uncanny combinations into 
completely new sounds and rhythms. Hip-Hop has always been 
at home with the notion of re-appropriation, with DJ’s, rappers 
and producers borrowing from and reforming the past into a new 
present. Paul Miller aka DJ Spooky That Subliminal Kid writes. 
“Each and every source sample is fragmented and bereft of prior 
meaning — kind of like a future without a past. The samples are given 
meaning only when re-presented in the assemblage of the mix.” (Cox, 
Warner, 2004, pp 349–350). DJ’s are able to channel the collective 
consciousness borne from our familiarity with the products of mass 
culture and use those connections to create something new in the 
light of the past; this play with the familiar to create the unfamiliar 
(in other words new) is a definite boon of remix culture. 

The willingness to quote extends from the music into the 
lyrics of hip-hop; artists will often quote the lyrics of others directly 
in their songs, particularly from well-known songs or artists. This is 
an act that must be done with great skill, as, ironic as it may seem 
— though it isn’t really when you understand it, originality is key in 
proving oneself a competent rapper. In quoting another’s lyrics one 
must do so cleverly and creatively to avoid being called out as a ‘biter’ 
(plagiarist). The danger of this is high as the quote is likely to be 
recognized by others, indeed that is the point, and if not done deftly 
risks failure. Jay-Z, one of Hip-Hops more successful artists, defends 
his quoting from accusations of “biting” leveled against him.  On the 
track What More Can I Say (Carter, 2003, track 3), he rhymes

 “I’m not a BITER / I’m a WRITER for myself and 
others / I say a BIG verse / I’m only BIGGIN’ up my brother 
/ BIGGIN’ up my borough / I’m BIG enough to do it”

The emphasis on the word “BIG” is a response to accusations 
that Jay-Z uses much too material from deceased rapper Notorious 
BIG. While an accepted and common practice, there are certainly 
tensions over quoting in rap, these tensions however aim to keep it 
honest. Most of Jay-Z’s quoting has come from well known tracks 
and are generally recognized (at least by fans) as being respectful of 
their original, they are also likely tolerated because of his ability to 
skillfully weave them into new songs

The entire chorus of rapper Cassidy’s hit single I’m a hustla 
(Reese, 2005, track 2) is a quote from a well-known Jay-Z song. In 



29

fact rather than rap it himself, Cassidy uses a Jay-Z’s recording of 
the words “I’m a hustler homie” to construct his chorus. This use is not 
viewed as plagiarism but clever re-appropriation. In the track he goes 
on to echo another Jay-Z lyric, “you made it a hot line, I made it a hot 
song” referring to the process of taking a single line from one track 
and building a whole new one around it. It is indeed a meta-reference 
as the original use of this phrase is in fact by Jay-Z in another song 
“Takeover” (Carter, 2001, track 2), referring to Jay-Z’s borrowing of a 
line from a song by artist Nas and making it the chorus of one of his 
songs3. There is certainly an intricacy in how these quotes are used 
and re-used that adds a certain richness and depth to the form.

Some critics of remix culture argue that ‘originality’ is always 
superior to remix, which they often view as a form of inferior copy. 
This argument I believe comes from a somewhat facile understanding 
of what remix culture is actually able to produce and the mode in 
which it operates, it may also come simply from exposure to bad 
remix. Whether it is a track by Girl Talk, a DJ who on one album 
combines over 300 samples in under 50 minutes of music — see fig. 
12, or masterful turntablists such as the X-Ecutioners, who can take a 
few seconds of material and cut and scratch it into something so new 
the old is barely recognizable. One can look at these as well as other 
works such as the grey album (a mashup of the Beatles White Album 
and Jay-Z’s Black Album) for evidence of highly skilled and creative 
work emerging from the remix culture. 

Just as the futurists sought to take the new sonic material of 
the industrial revolution present in their surroundings in the creation 
of new music; DJ culture, remix culture, seeks to make use the cultural 
content we are bombarded with (or to look at another way, have 
tremendous access to) in the creation of art and new cultural content.

When we take a look at the technology for creation 
and distribution of musical work today we see an even looser 
configuration of the artists that are involved in each other’s practice. 
The looseness of association between members of a movement such as 
De Stijl does not compare with the diversity of sources, across genres 
and time periods available to the modern musician with a sampler 
and an Internet connected computer.

 
3 On the song “Takeover” (2001) Jay-Z is referring to taking the lyric “I’m 

out for presidents to represent me” from Nas’ song “The world is yours” (1994) and 
turning it into the chorus for one of his songs “Dead Presidents 2” (1995)



30

“This morning I was listening to a Thai lady singing; I can 
hear the sound of the St Sophia Church in Belgrade or Max’s 
Kansas City in my own apartment … the whole global musi-
cal culture is also available. That means that a composer is 
really in the position, if he listens to records a lot, of having a 
culture unbounded, both temporally and geographically, and 
therefore it’s not at all surprising that composers should have 
ceased writing in a European classical tradition, and have 
branched out into all sorts of experiments” — Brian Eno 
(Cox, Warner 2004, pp 128)

The above quote while liberating in one sense also 
underscores the very real possibility of an artist today hearing her 
work incorporated into the work of another artist with which she has 
no previous social connection or contact. 



31

Figure 12. Visualisation of Samples used in 
Girl Talk Single, "What It's All About", Wired  
Magazine 2009, Retrieved on July 15 2009 
from Wired.com, http://www.wired.com/

special_multimedia/2008/pl_music_1609



32

While this thesis is not primarily about copyright law, we 
do recognize that law shapes our conceptions, as individuals and a 
society, with regards to these issues of sampling, remix, originality and 
ownership. In this chapter we aim to provide a brief lay of the land 
with respect to modern US copyright law and its tensions with remix 
culture. This discussion will also serve as a launching pad to look at 
alternatives that have emerged over the last twenty or so years.

The goal of copyright, to support and encourage 
invention and creativity for public benefit, is one that we share 
in the design of our system. Structural changes brought about by 
technical advancements in communications technology however, 
create a tension between existing models of copyright and new 
collaborative practices and emerging mores around cultural reuse and 
appropriation.

U.S. copyright law provides exclusive rights to the creators of 
‘original works of authorship’ that allows creators to control, among 
other things, the reproduction, the creation of derivative works, and 
the public performance of their work  (“U.S. Copyright Office - 
Copyright Law”, n.d.). Copyright law however places a limit on the 

Chapter 3. Creativity & Copyright 

Law: Tensions of ownership

When “the same thing” is so different that it constitutes a new thing, it isn’t 
“the same thing” anymore — Chris Cutler



33

amount of time a work can be controlled by its author (or ‘rights 
holder’ in cases where the author sold his/her ‘right’). The rationale for 
this being that while it is in the public interest to allow the creator the 
opportunity to derive compensation from their work, and therefore be 
encouraged to produce more, yet it would not be in the public interest 
to allow the copyright holder (or their estate) to have a monopoly 
on their work indefinitely (Benkler, 2007 pp 36–37). This should be 
evident when we consider the nature of information production, 
particularly that new information is created from old information, 
thus limits on copyright terms allow new information to be developed 
from old by a wider pool of people after the grace period has expired. 
This limit was originally 14 years, with an opportunity for the author 
to obtain another 14 years of protection if they are still alive, but 
has been extended over time and now lasts 70 years plus the life of 
the author (or a maximum of 120 years for works for hire or other 
anonymous sources) (“United States Copyright Office A Brief 
Introduction and History”, 2009).

Lawrence Lessig, author and law professor, argues in his book 
Remix that copyright in its current form supports a Read-Only (RO) 
culture (borne out of print and other technologies for mechanical 
reproduction) that today criminalizes or makes prohibitively 
expensive the re-appropriation of existing cultural content for use in 
new contexts (Lessig, 2008). In this culture ownership is absolute and 
control is king. He argues that new technologies encode a more Read-
Write (RW) culture and it is not in the public interest to relentlessly 
maintain current practice around certain cases of copyright 
infringement, particularly with regard to remix and re-appropriation. 
The tensions around who owns the cultural products of artists and 
other creative individuals, and what ‘consumers’ are allowed to do 
with it force us to reconsider what it is we want out of our intellectual 
property frameworks.

 Our view is that prevailing technological shifts have 
changed how information is consumed and produced and create new 
opportunities for creativity and invention that work on the edge (and 
sometimes outside of ) current copyright frameworks, this is a view 
shared by others and there has been a movement to create alternative 
frameworks that better support RW creative practices. Before looking 
at these alternative frameworks, we shall look at a few examples of 
how read-write culture clashes with the rights of copyright holders.



34

fAllout

Plunderphonics

Plunderphonics is a term coined by Canadian composer 
John Oswald to describe the exclusive use of sound samples in the 
creation of a new audio work, in particular he alludes in his essay 
“Plunderphonics, or Audio Piracy as a Compositional Prerogative” 
that in plunderphonics it is important that the source material is 
recognizable (Oswald, 1985). Plunderphonic is also the title of an EP 
that Oswald released featuring tracks that used source material from 
artists such as the Beatles, Michael Jackson, Dolly Parton and Elvis 
Presley, attribution was made clear yet permission for their use was 
never sought. Most tracks on the EP are made entirely from the work 
of a single artist (and most often a single work), transformed mainly 
by changes in playback speed and chopping up and rearranging 
pieces of sound. Four months after release, upon threat of litigation, 
Oswald ceased distribution of the album and surrendered his 
remaining copies to the Canadian Recording Industry Association 
to be destroyed (Oswald 1990). While the copyright holders were 
certainly within their ‘rights’ to stop Oswald, it is important that we 
ask ourselves what the possible reasons they may have for doing so, 
and who the potential losers and winners of this action are. The first 
reason that comes to mind may be economic, on the face of it seems 
unfair for someone to be making money of the back of someone else’s 
work, in this case however Oswald never offered the work for sale, 
copies were distributed to radio stations and libraries and listeners 
encouraged to dub them to tape. We are also left with the option that 
artists may simply not want their work to be used in particular ways 
(i.e. they may not like the outcome), however is this the purpose of 
copyright? Should it be? Do Oswald’s Plunderphonics discourage or 
de-incentivize the original creators and thus harm the public good? 
These answers to these questions are not clear-cut or universal across 
use cases or individuals on either side of the equation, especially when 
using current copyright decisions as a guiding model.



35

 YouTube

Stephanie Lenz is a mother who put a thirty second video 
of her thirteen month old son dancing to the song “Let’s go Crazy” 
by artist Prince on YouTube. This was not a professionally recorded 
video, but one by a mother who grabbed her camcorder to record a 
moment in her young child’s life and aimed to share it with friends 
and family  (Lessig, 2008 pp 1-4). This re-appropriation of culture was 
more accidental than artistic, but it still resulted in her being accused 
of copyright infringement. About four months later YouTube sent her 
a notice informing her that her video would no longer be viewable 
because of a complaint from the Copyright holder of Prince’s song, 
Universal Music Group. While Lenz was able to countersue Universal 
Music Group and had a judge declare that her use was indeed “fair 
use” (“Lenz vs. Universal | Electronic Frontier Foundation”, n.d.), 
this case demonstrates tensions of ownership in works that use pre-
existing media; does Universal have any rights to ownership over Mrs. 
Lenz and her sons’ experience? 

While the above is an extreme example it points to the 
extraordinary lengths corporate interests are willing to go to protect 
their artists’ work, though in this case you would ask protect it from 
what? This makes the situation even more dire/impossible for those 
who seek to mix and ‘mash up’ culture intentionally. One of the more 
visible places this tension is playing out is YouTube, a search for 
“Mashup” on YouTube will yield hundreds of results. “Mashups” are 
a form of media that combine the audio or visuals from disparate 
sources into a new video (or song in the case of strictly audio 
mashups). One particular genre of mashup is the anime music video; 
these consist of typically of video from one or more anime shows 
edited to correspond with an audio soundtrack usually unrelated to 
the anime being used (“Anime Music Videos”, 2006). These videos 
would likely be considered illegal in U.S. copyright law but it is hard 
to see how they compete in the same domain with the works from 
which they borrow material (the anime or the audio track), and thus 
threaten the livelihood of those creators. Current YouTube policy is to 
“silence”4 these videos when a complaint of copyright infringement is 
received.

4 The audio track is muted while the video is allowed to play, a notice 
is displayed to explain why there is no audio. An example can be seen here www.
youtube.com/watch?v=p6ldtvX6xsM



36

While these technologies are not that new, their current 
availability, and importantly their new distribution channels, makes 
it such that anyone can repurpose cultural artifacts, anyone (and 
their mother) can be a DJ. The changes enabled by technological 
innovation are an important theme underlying this thesis and result 
in an increasing amount of friction with current law as these practices 
become more widespread, connected and sophisticated.

What about Fair Use?

Those familiar with U.S. copyright law are aware of the 
limitations on its application, including a limit to protect “fair use” 
of copyrighted works. However what counts as fair use is difficult 
to categorize, it is important to remember that in this context “fair 
use” is a legal term with specific meaning that may or my not overlap 
with your conceptions of a “fair” use of a copyrighted work. The U.S. 
copyright office describes fair use in the following manner.

“Section 107 contains a list of the various purposes for which 
the reproduction of a particular work may be considered fair, 
such as criticism, comment, news reporting, teaching, schol-
arship, and research. Section 107 also sets out four factors to 
be considered in determining whether or not a particular use 
is fair: 

The purpose and character of the use, including 1. 
whether such use is of commercial nature or is for 
nonprofit educational purposes

The nature of the copyrighted work2. 

The amount and substantiality of the portion used in 3. 
relation to the copyrighted work as a whole 

The effect of the use upon the potential market for, 4. 
or value of, the copyrighted work 

The distinction between fair use and infringement may be 
unclear and not easily defined. There is no specific number of 



37

words, lines, or notes that may safely be taken without per-
mission.” ([“U.S. Copyright Office - Fair Use”, 2009)

As indicated above “fair use” has a very limited and often 
difficult to interpret scope primarily protecting education and 
research as well as criticism and parody (although its use has been 
extended to include things like time-shifting media (Sony Corp. 
of America v. Universal City Studios, Inc. 464 U.S. 417, 1984)) 
Determined on a case-by-case basis, an individual accused of 
copyright infringement takes on significant legal burden and risk 
when using a fair use defense; this is true whether you are an amateur 
(like Stephanie Lenz) or a professional (like John Oswald). The 
myriad factors involved in determining fair use make it somewhat of 
a moving target (a potentially expensive moving target should you be 
on the wrong end of it). The only way to really examine the scope of 
fair use is to examine previous cases; the following examples are from 
the Stanford Copyright and Fair Use Center.

“Fair use. The rap group 2 Live Crew borrowed the opening 
musical tag and the words (but not the melody) from the first 
line of the song “Pretty Woman” (“Oh, pretty woman, walk-
ing down the street “). The rest of the lyrics and the music 
were different. Important factors: The group’s use was trans-
formative and borrowed only a small portion of the “Pretty 
Woman” song. The 2 Live Crew version was essentially a dif-
ferent piece of music and the only similarity was a brief mu-
sical opening part and the opening line. (Note: The rap group 
had initially sought to pay for the right to use portions of the 
song but were rebuffed by the publisher who did not want 
“Pretty Woman” used in a rap song.) (Campbell v. Acuff-
Rose Music, 510 U.S. 569 (1994).)

Not a fair use. The artist, Jeff Koons, created a series of porce-
lain sculptures based upon a photograph of a man and woman 
holding puppies. Although certain aspects were exaggerated, 
the photo was copied in detail. Koons earned several hun-
dred thousand dollars from sales of the sculptures. Impor-
tant factors: Although Koons claimed fair use under a parody 
theory the sculptures were part of his “banality”™ series the 
court disagreed claiming that the sculptures did not parody 



38

the work. The court also noted that it did not matter whether 
the photographer had considered making sculptures; what 
mattered was that a potential market for sculptures of the 
photograph existed. (Rogers v. Koons, 960 F.2d 301 (2d Cir. 
1992).)

Fair use. A person running for political office used 15 sec-
onds of his opponent’s campaign song in a political ad. Im-
portant factors: A small portion of the song was used and the 
purpose was for purposes of political debate. (Keep Thom-
son Governor Comm. v. Citizens for Gallen Comm., 457 F. 
Supp. 957 (D. N.H. 1978).)

 Not a fair use. A poster of a “church quilt” was used in the 
background of a television series for 27 seconds. Important 
factors: The court was influenced by the prominence of the 
poster, its thematic importance for the set decoration of a 
church and the fact that it was a conventional practice to 
license such works for use in television programs. (Ringgold 
v. Black Entertainment Television, Inc., 126 F.3d 70 (2d Cir. 
1997).)”

(“Stanford Copyright & Fair Use - Summaries of Fair Use 
Cases”, 2007)

We can see from the definition and the examples above that 
fair use is not intended to cover derivative works of all kinds. While 
it recognizes the importance of being able to quote for the purposes 
of education, critique and commentary (including art which functions 
as social commentary) and considers the transformative (vs. purely 
reproductive) nature of the work as well as considering whether the 
new work can substitute for the old or the new works effect on the 
commercial viability, it does not cover many, many forms or remix and 
creative re-appropriation (for example it has not generally protected 
the sampling prevalent in hip-hop and other popular music genres — 
in these domains samples need to be licensed — nor does it seem to 
protect YouTube from litigation on the audio tracks of Anime Music 
Videos). Our next section looks at alternative frameworks that seek to 
create spaces more amenable to sampling and remix practice.



39

copyleft

Emerging out of the tensions between remix cultures and 
current copyright law are movements that seek to provide alternative 
frameworks, legal and cultural, to those of modern copyright. The 
copyleft movement is a framework that emerged from a part of 
the software community that desired to create an ecosystem that 
encourages openness, sharing and the creation of derivative works. 
Copyleft licenses, such as the GNU foundations General Public 
License (“GNU General Public License”, 2007) or the Creative 
Commons licenses (“Licenses - Creative Commons”, 2009), typically 
relinquish a number of the rights provided to authors under copyright 
(which is automatic in the U.S.), while sometimes adding a set of 
alternate restrictions on use. Rights relinquished often include control 
over reproduction and the creation of derivative works, they are thus 
freely available for re-appropriation. Restrictions added often, but 
not always, seek to require that derivative works are released under 
a similar copyleft license thus expanding the pool of work in the 
commons; they also often require some form of attribution to the 
contributor of the work being reused. Some, but not all copyleft 
licenses restrict commercial uses, it should be noted that many 
copyleft proponents do not think the freedoms their licenses provide 
preclude commercial use; this is well encapsulated in the phrase “free 
as in free speech, not as in free beer” (“The Free Software Definition”, 
1996). It is within these frameworks that we situate our work. 
Our proposal is a design that seeks to better support those already 
participating within these alternative frameworks for intellectual 
property control. The following chapter will examine the modes of 
production within these alternate frameworks in a bit more depth 
with particular focus on free and open source software.



40

In this chapter we seek to take a broader look at the 
alternative frameworks for creative and cultural production that we 
introduced earlier, particularly looking at how they are enabled by 
the ubiquity of networked technologies and the social rules by which 
they operate. Prof. Yochai Benkler (2007) refers to these frameworks 
from an economic perspective as sharing economies and introduces 
a term commons-based peer production to describe the structure in 
which information is produced. Commons-based peer production refers 
to the idea of a distributed set of individuals without the traditional 
hierarchy of a firm, i.e. peers, pooling their creative output into a 
commons that can then be used to support continued enrichment of 
that commons as well the goals of the participating individuals. In the 
case of free software, that commons is the source code that developers 
have made available to others under permissive (copyleft) licenses. 
The new economies that we are going to be discussing are also not 
market based, i.e. money is not the primary token of exchange. 
Instead “sharing” is the name of the game. We will look at some 
motivations present with these economies, taking free software as our 
example case, but first we will look at why these sharing economies 
are so salient in today’s environment.

Chapter 4. New Economies: The Sharing Economy 

& Commons Based Peer Production



41

politicAl AffordAnceS of network technology

As described by Benkler (2007), one of the major contributing 
factors to the salience of sharing economies is the technology that 
makes them viable. Relatively cheap and widely available tools for 
information production and the infrastructure that interconnects 
them, the Personal Computer and the Internet respectively, situate 
individuals much more centrally in the production process and 
further allow the coordination of these individuals’ activities into 
groups and associations as large or larger than some of the biggest 
firms created by market based production systems. If we take the 
example of Wikipedia or the development of the GNU/Linux 
operating system, they work first because they are seated in systems 
(both technological and social) that empower individuals to use their 
talents and gifts without relying on a formal organization; for example 
editing or creating an encyclopedia article, or writing some code to fix 
a bug or add a new feature does not require the support of a company 
or organized group for those that have the knowledge to do so, and 
access to a (relatively inexpensive) PC. Secondly they are able to 
function due to the connectivity afforded by communications systems 
such as the Internet as well as socio-technical tools built to support 
and coordinate these activities across these geographically distributed 
networks, such as the wiki (both wiki-software and wiki-mores) or 
distributed version control, bug tracking software and bazaar style 
development philosophy (Raymond, 1997) associated with open 
source software. The affordances of these systems are political in the 
sense that they affect how people are able to orient themselves with 
respect to each other in a system of production. 

The nature of the production of information goods also 
gives salience to the sharing model within this domain. In chapter 
two of this thesis we demonstrated with respect to art practice, 
the importance of being able to build on previous work in the 
creation of new culture. This is true of information in general; new 
information is constructed out of old. Technology that affords rapid 
and cheap transmission of information will encourage the creation of 
corresponding socio-economic models that set information free. The 
low [capital] cost of the method of production and low marginal cost 
of its reproduction, also allows us to sometimes completely escape the 
monetary reward aspect usually associated with getting something 
made. Other motivational factors are then able to come to the 



42

forefront, such as “doing something for the love of it”, or “the feeling 
of being in a community” or “doing something to make the world a 
better place”.

rewArd & motivAtion in free And open Source SoftwAre

Given what we have said previously about the ability of 
sharing economies to sidestep monetary exchange, why do people 
do it? The simple answer is that money is not the only reason people 
‘work’. We shall try to unpack this statement a bit and look at a 
particular set of motivations for people to participate in free software. 
We can divide the rewards & motivations to participate in open 
source software into two broad categories, individualistic and social 
(in that they are borne out of interactions with others).Individualistic 
motivations identified in the literature include:

 Learning. Where individuals will start or join an open 
source project in order to better learn how to do something. Linus 
Torvalds started writing the Linux kernel partly because he wanted 
to learn more about the architecture of the Intel 386 machine he 
had just obtained (Torvalds, 1991). While this motivation is often 
present when one is not working on open source projects, open source 
provides the extra opportunity of being able to look at other peoples 
code as well as get their feedback on your contributions. Hars and 
Ou (2002) identify that open source projects provide individuals 
opportunities to “select learning experiences that meet their needs 
and interests”. Open source also provides chances for inexperienced 
programmers (e.g. students) to work on real projects5. 

Scratching one’s own itch. This is a phrase coined by Eric 
Raymond, a writer and an experienced participant in open source, 
in his seminal text The Cathedral and The Bazaar. With respect to 
software it describes the act of creating or fixing something to solve 
a personal need, and is a common motivation in starting open source 
projects. (Raymond, 1997)

Personal Enjoyment. for many programmers, 
programming is not always ‘work’. That is to say many programmers 

5  A good example of this is the Google Sponsored “Summer of Code” 
which pairs students with mentors in open source projects to make improvements 
over the course of summer



43

find the creative and technically challenging nature of programming 
personally rewarding. (Torvalds & Diamond), 2002. 

Politics. Part individual, part social, some free software 
participants do so out of the belief that it is highly important that 
free (as in speech — i.e. access to source code) software exist. These 
individuals are wary of the control over the means of using computers 
(i.e. Software) being completely under the control of commercial 
entities and corporations. (Lakhani & Wolf, 2005)

All the motivations above (except possibly the last one) are 
often true whether what one is writing is open source or not. Socially 
driven motivations on the other hand emerge out of the context of 
working within a group or community. Socially driven motivations 
include:

Consciousness of kind. This term describes a feeling of 
inclusion within a community and a felt connection between the 
members of that community as well as a collective sense of separation 
from non-members.  (Bagozzi & Dhokalia, 2006, Lakhani & Wolf, 
2005).

Sense of duty & Obligation. As developers and users 
(that support open source software use) become more central to the 
functioning of the community, they may begin to have a sense of duty 
or obligation towards the project, this obligation is not presented as 
a burden as it often represents a feeling of “indispensability” (von 
Krogh & von Hippel 2006, Bagozzi & Dhokalia 2006).

Recognition & Reputation. recognition of one’s 
contributions are important personal motivations for participants 
in these communities as it creates a sense of appreciation for one’s 
work which is an encouragement to produce more, it also provides 
a validation for the work one has put in to making a contribution. 
For example if one is recognized by having their patch accepted for 
inclusion into the main source, then that contribution is essentially 
blessed as being good enough for that community. When that 
validation is made public (in a contributor list for example) then 
that provides a public recognition that generates good feeling in the 
developer, the developer is also then able to leverage this recognition 
inside and outside of the community (getting other patches accepted, 
having more influence, or using that mention of contribution when 



44

stating their qualifications in another context (Raymond, 1997, Lerner 
& Tirole, 2005). Surveys by Ghosh (2005) and Lakhani & Wolf 
(2005), confirm that reputation is an important motivator in open 
source.

looSely bound cooperAtion

Our focus now shifts from the structure that we typically 
associate with the development of open source software to the 
mode of collaboration we are directly addressing in this thesis. We 
distinguish our use of the phrase loosely bound cooperation from 
the kind of collaboration one would see in Wikipedia or among 
Linux kernel developers (massive collaboration), by suggesting that 
in loosely bound cooperation individuals are pursuing their own 
independent goals, yet are able to help each other along the way.

While participants are not strongly bound to each other in 
open source development in the sense that participants can leave the 
project whenever they want (not without consequence, but they are 
not bound by contract). They are bound together in the sense that 
they are all working on the same project, indeed that is the reason 
that the community formed. In systems such as Wikipedia and 
GNU/Linux all participants are bound by (and participate in the 
construction of ) a shared vision of what it is they are trying to create. 

An example of loosely bound cooperation can be seen in the 
web service delicious (“delicious”, n.d.). Delicious is a service that allows 
users to access their web bookmarks from any Internet accessible 
computer. Rather than store them locally on the users’ machine, 
delicious allows you to store your bookmarks on their servers thus 
allowing you access to them from any computer that you can browse 
the Internet with. This goal is an individually motivated one — a 
user wants better access to their bookmarks. However in the context 
of a network of users, delicious is able to leverage this essentially 
selfish behavior (note that we do not intend to use the term selfish 
in a pejorative sense but merely to indicate that the behaviour is 
self-motivated) to provide added value for all users of the service. 
By allowing users to tag their bookmarks and by making them 
publicly searchable, delicious effectively provides a human filter on 
the larger Internet. By tracking simple metrics like who or how often 



45

a bookmark has been saved to delicious, a popularity ranking is also 
created. The public nature of the bookmarks allows one to discover 
other users who are interested in similar web resources and see what 
else they are looking at on the Internet. All this value is created as a 
side effect of the individually motivated action to save bookmarks to 
a central server. In this system, users are not explicitly collaborating 
with each other, they are pursuing their own goals, however the 
service allows these users to cooperate with each other, and this is 
the model we want to support in our design. In considering loosely 
bound cooperation there is a wide continuum of relationships 
between the participants, from small groups actively collaborating 
or communicating with each other, to individuals on opposite 
peripheries of the domain that never make direct contact with each 
other.

Development Across Project Boundaries

When applied to software development loosely-bound 
cooperation can be seen in cooperative development across 
projects, and is something that can already be observed in the open 
source development ecosystem. One of the boons of open source 
development is that the source is not just available for you to change 
parts of a program you may not like, but also provides opportunity 
to reuse parts of that code in a completely different project.  Richard 
Stallman writes about the programming community at MIT’s AI Lab 
in the 70s, 

“We did not call our software “free software”, because that 
term did not yet exist; but that is what it was. Whenever peo-
ple from another university or a company wanted to port and 
use a program, we gladly let them. If you saw someone using 
an unfamiliar and interesting program, you could always ask 
to see the source code, so that you could read it, change it, or 
cannibalize parts of it to make a new program.”  [Emphasis 
added] — Richard Stallman (Stallman, 1998)

This “cannibalization” is another example of loosely bound 
cooperation, the developers of the program were not building it to be 
cannibalized (but possibly to scratch their own itch), and the cannibal 



46

does not join the formers community in the act of cannibalizing. 
The two are not bound to each other or to the same project yet they 
are able to cooperate (as one sided as the cooperation may seem at 
first) by virtue of the openness of the code. It is this use case that we 
seek to support in the design of Share. How do we design a system 
that supports this type of cooperation, and provides as much value as 
possible to all participants in the system?

 Currently we see few to no tools that explicitly support this 
use case (Canonical’s Launchpad project hosting service does provide 
mechanisms for reporting and tracking bugs that that affect multiple 
distinct projects); and methods to provide reward for these forms of 
cooperation are ad-hoc or non-existent. For example if I cannibalize 
a program, the original authors would never know unless I sent them 
an email or posted it somewhere in the credits of my program, and in 
the latter case the original authors may not even discover my program 
given that it is possibly in a completely different domain. This is not 
necessarily a problem, after all what I did with their code may not be 
interesting to them, but it is a potential lost opportunity to provide 
private or public recognition of their assistance with my work, as 
well as increased opportunity for them to see what uses their code 
gets applied to (and what changes may be made to it). Our proposal 
seeks to explore this space. While it is recognized that attribution is 
important among participants in the open source ecosystem, we seek 
to better encode this fact in the design of the programming tool itself.

Challenges Across Project Boundaries

When we contrast motivations for participating in this 
kind of loosely bound cooperation with that which is present within 
open source development projects a number of the social factors we 
identified in previous sections are missing. Firstly when individuals 
are not working on the same project, ‘consciousness of kind’ is 
reduced or non-existent as the participants do not form a cohesive 
group. Participants also carry little sense of obligation or duty with 
regards to other peoples’ project. Additionally reputation cannot exist 
without a persistent identity within a community and a means of 
communication that allow markers of reputation to be transmitted 
and displayed. How can we deal with the even looser associations 



47

between developers in different projects than those present in typical 
open source development? From the purely individualistic point of 
view there is less reason to share code that one has written with others 
doing possibly unrelated things. With this consideration we propose 
that systems like ours target existing communities of practice6.

Wenger describes communities of practice as “groups of people 
who share a concern or a passion for something they do and learn how to 
do it better as they interact regularly”. They are characterized by three 
things: a domain of interest, a community of people, and a shared 
practice (i.e. set of tools, experiences etc.) (Wenger, n.d.) He identifies 
several activities as being typical within communities of practice. 

 (Wenger, n.d)
Communities of practice support the ‘learning’ motivation 

we identified in the previous chapter, however by virtue of being a 
community they are also able to provide reputation based motivation, 
and to a lesser degree than in cohesive projects the consciousness of 
kind from being a member of a community (albeit a broader one). 
Our proposed design seeks to reveal these patterns of sharing to 
better leverage the motivating effects of reputation in encouraging 
loosely bound cooperation.

6  That is not to say that we do not see Share as part of a toolkit that 
could be used in the development of a new community, but rather that in its current 
form we think that share complements the existing tools online communities use to 
interact.

Problem Solving “Can we work on this design and brainstorm some 
ideas; I’m stuck.”

Requests for information “Where can I find the code to connect to the 
server?”

Seeking experience “Has anyone dealt with a customer in this 
situation?”

Reusing assets “I have a proposal for a local area network I wrote 
for a client last year. I can send it to you and you 
can easily tweak it for this new client.”

Coordination and synergy “Can we combine our purchases of solvent to 
achieve bulk discounts?”

Discussing developments “What do you think of the new CAD system? Does 
it really help?”

Documentation projects “We have faced this problem five times now. Let us 
write it down once and for all.”

Visits “Can we come and see your after-school program? 
We need to establish one in our city.”

Mapping knowledge and identifying 
gaps

“Who knows what, and what are we missing? What 
other groups should we connect with?”



48

Before describing our work we shall look at existing tools and 
projects that relate to how communities of programmers (and non 
programmers in the case of one of the projects) can share resources 
(typically code) with each other while being able to maintain various 
levels of independence. These tools also showcase mechanisms to 
recognize or otherwise reward participation and thus encourage 
participation in the community.

proceSSing, the community; forumS And other exiSting toolS

As we have mentioned previously, our software was designed 
with a particular community of practice in mind, namely the 
processing community. Our inclusion of ‘the community’ in this related 
work section is to display some of the existing tools for loosely-bound 
cooperation available in general to communities whose interactions are 
mediated by the world wide web, using the processing community as 
an exemplar (though we will look at tools from other communities). 

Personal web sites and blogs are a common method 

Chapter 5. Related Work



49

for processing users to share the artworks and code experiments 
(processingblogs.org is a website that aggregates other blogs and 
websites that regularly post processing work), the software makes it 
fairly easy to publish one’s work as it is a single click operation to 
generate the html code that embeds an applet version of a project 
built in processing (it is however up to the individual to find a method 
to host it), by default processing bundles the source files for the project 
along with the web page used to view it. Thus it is fairly common to 
find source code available alongside processing work when it is posted 
online (although many artists also remove the links to the source 
code, particularly for more mature works). Users also display their 
work (which is often visual) on photo and video sharing sites such as 
flickr7 or Vimeo8. Recently sites like OpenProcessing.org have emerged 
that aim to provide hosting for the users’ applets yet also emphasize 
a code sharing aspect; work uploaded to OpenProcessing.org must be 
licensed using a copyleft license with source code available for all 
to see. Through sites like these and the communication that occurs 
on them, members of the community are able to share knowledge, 
experience and resources with each other. However there are no 
mechanism to track activity across these resources and the actual 
programming tools, when we ‘import’ some code from a web site 
into our programming environment the link is lost, our project aims 
to better maintain these traces of reuse and connect the tools for 
collaboration to the those we use to write code. 

Sharing information over the web is common in 
programming communities, where there will often be a number 
of widely read blogs in addition to mailing lists, forums and IRC 
channels. Within these forums participants are able to build a sense 
of community that encourages the flow of information. Donath (1998) 
has previously identified the importance of identity (and reputation) 
in motivating information exchange in user communities such as 
Usenet groups and identified features [and use practices] in the 
design of communication technologies that support the exposition 
of identity to the community, including seemingly simple things like 
email signatures or the domain from which an email is sent. 

When we look at the design of forum software we see they 
often include some mechanism to explicitly display reputation. The 
image in fig. 13 below displays the panel displayed next to a user post 

7  http://www.flickr.com/groups/processing/pool/
8  http://www.vimeo.com/groups/processing



50

on the Ubuntu forums, the coffee cup/bean icons are an indicator 
of this user’s activity on the website, the forums also provide a 
mechanism for users to ‘thank’ other users for their assistance and 
for these ‘thanks’ to be displayed publicly, letting others know how 
helpful this user is. The StackOverflow (“Stack Overflow”, 2009) 
community forums in addition to having a very explicit points based 
reputation system that allows users to perform different actions on 
the site, also has a system of ‘badges’ (fig 14) that users can obtain for 
particular behavior on the site. 

Figure 13. Sidebar of a post on the Ubuntu 
Forums, Retrieved on July 29 2009 from 
UbuntuForums.org, http://ubuntuforums.
org/showthread.php?t=995704

Figure 14. Sample of some of the badges available 
to Stack Overflow users, the numbers beside the 
badge indicate how many users have obtained 
that badge. Retrieved on July 29 2009 from 
StackOverflow.com, http://stackoverflow.
com/badges



51

These are both examples of mechanisms that use reputation 
to motivate people to participate in these forms of loosely bound 
cooperation and perform the tasks desirable to the systems creators. 
We hope that our visualization of attribution will perform a similar 
role in encouraging code sharing. While the processing forums are 
much less overt about displaying user history (they are not displayed 
on every post but only on a user profile page), it is important to note 
that these are design decisions that shape the way the community 
behaves. Our work, like the processing forums, shies away from the 
explicitly competitive reward and recognition mechanisms.



52

ScrAtch

Scratch (Maloney et al, 2004) is a programming language 
and community geared towards children, that provides a lot of 
encouragement to share one’s work. Youth are able to create Scratch 
projects and easily upload them to the Scratch website where they are 
put on display for other members of the community. Other youth can 
then download these projects and their source code and modify them 
in the creation of new work. When they upload these new projects 
they are marked as remixes, thus providing attribution to the original 
source. The integration between the tool and online community are 
right in line with what we are trying to achieve in our work. Monroy-
Hernández (2007) identified the usefulness of creative appropriation 
for learning in communal environments and describes the ways in 
which the design of the scratch website encourage participation in 
communal exchange. The scratch website encourages uploading work 
to the site by highlighting works across various metrics, including 
“Top Remixed”, “Top Loved” (a popularity metric), and “Top 
Downloaded” (fig. 15). By placing these projects prominently on the 
home page it provides great reward for projects that successfully 
engage with other members of the community.



53

Our work seeks to extend the practice of creative 
appropriation by increasing the granularity of artifacts that can be 
shared. The main shared artifact in Scratch is the whole project, 
and while a user can remix an entire project, it is currently more 
challenging to make use of a component of one project in another 
one. This is done by exporting “sprites” from one project and 
importing them into another, however during this process the link 
between the two projects is not captured by the system. To continue 
the use of the musical metaphor, if Scratch enables individuals to 
track remixes our work seeks to track sampling.

Figure 15. Popular projects 
highlighted on the Scratch 
front page. Retrieved on 
July 30 2009 from scratch.
mit.edu, http://scratch.
mit.edu/



54

openStudio

Described as a “an experiment in Creativity, Collaboration 
and Capitalism”, OPENSTUDIO (“OpenStudio”, n.d.) couples a 
simple drawing tool “with an economy of artists, curators, collectors, 
dealers and viewers”. Users of OPENSTUDIO create artwork using 
a simple drawing tool that they then sell or give to others. Users were 
also allowed to modify (remix) work they had bought before selling 
it on. Coupled with a process capture tool created by Ding (2006) that 
recorded the various steps in creating a drawing, they were able to 
display the history of an art piece as well as who had done what in 
the creation of a derivative work. Not only does this support learning 
from watching other peoples’ drawing process, it provides publicly 
visible attribution when derivative works are created (they even report 
success at detecting forgeries and blatant copies). However the model 
implemented in OPENSTUDIO made a rival good out of the digital 
work produced, when a work was sold, ownership and control were 
completely transferred. Also OPENSTUDIO operated primarily in a 
market economy (including a virtual currency, the “burak”) as opposed 
to the non-market sharing economies in which we are interested, 
thus different motivational factors are present. It is however an 
interesting study in how a system like Share (which has similarities 
with OPENSTUDIO — minus the virtual economy), might better 
interact with the commercial reality of some of the participants that 
may use it.



55

github

GitHub (“GitHub”, 2009) is a commercial code hosting 
service built upon the open source distributed version control system 
Git. It adds a social component to the code hosting facility provided 
by its competitors and provides the ability to track ‘forks’ to projects 
you put up when the ‘forker’ is a user of the github service as well 
(a fork in github terminology is a branch of a project created and 
controlled by another user). One important difference with what we 
are trying to achieve is around the issue of working across projects. 
The concept of a ‘fork’ does not really exist when integrating pieces of 
diverse projects with something you are working on. Similar to our 
comparison with Scratch, we seek to examine a design that works at a 
finer level of granularity.

Figure 16. View showing forked versions of 
a project on github and the commit activity 
on them. Retrieved on July 30 2009 from 
http://github.com/blog/39-say-hello-to-the-
network-graph-visualizer



56

As stated in the introduction, this thesis proposes a novel 
programming environment, titled Share, that is geared towards 
encouraging loosely bound cooperation in a community of creative 
hackers. We aim to do this by leveraging the recognition/reputation 
related motivational factors present within communities of practice 
as well as providing pragmatic (i.e. related to the actual practice 
of programming) value for sharing code. Our programming 
environment has a number of features towards that end: it 
automatically shares all the code written in it with other members 
of the community and also tracks movement of that code (via copy-
paste operations) to a fine level of granularity, such that the system 
can identify the source of any given character within the repository. 
Users are also able to explicitly make links to other code artifacts.

The relationships thusly built between code artifacts are 
visualized to users of the tool, providing a form of automatic public 
attribution as well as a more socially oriented way to browse through 
a code repository. Share also provides a simple form of persistent 
conversation around each code artifact.

Our design goals revolved around the following 

Chapter 6. Design & Implementation



57

considerations,
Creating a good shared workspace vs. creating a 

good exhibition space. The environment and its mores should feel 
like a comfortable place for work in progress as opposed to being a 
place just for finished work. Because one is working in public view, 
it is important the space not privilege finished work over work in 
progress. Thus in share code is continuously uploaded as it is written 
(as opposed to when it is deemed finished by its author).

Non-disruptiveness. As much as possible we want to allow 
individuals, should they so desire, to work completely disengaged 
from the concept of working within a community (yet still be 
contributing to it). As users of the tool are pursuing their own 
independent goals, they should not feel disrupted by the environment 
or other users, at the same time however we want to provide a smooth 
continuum for increased engagement with the community that the 
tool connects you to. This design goal led to a focus on interaction 
in share being asynchronous and a decision that one should be able 
to program in share whether one is online or offline, with seamless 
transition between the two states.

Non-competitiveness. Given our use of attribution and 
reputation as a reward mechanism, there exists a chance for the 
environment to become an overly competitive one, which we feel 
would be contrary to our goal of supporting cooperation and our 
desire to create a comfortable workspace. We desired to create an 
attribution system that would not encourage overly competitive 
behavior. To demonstrate the variety of approaches one can take in 
designing such a system, fig. 17 produced by the Yahoo!® corporation 
displays a library of ‘patterns’ commonly used in creating a reputation 
system (“Yahoo! Design Pattern Library- Reputation”, n.d.) and even 
organizes them along a competitive spectrum (“The Competitive 
Spectrum Pattern - Yahoo! Design Pattern Library”, n.d.). We mainly 
have tried to focus on subtle displays of reputation.



58

For example we would be avoiding patterns like ranking, 
leaderboard, or points while others like collectible achievements or 
identifying labels may be more suitable.

 
Cross-platform support. For practical reasons relating to 

being able to recruit users we wanted Share to run on all three major 
platforms supported by processing. Windows, Mac OS X and Linux.

Thick Client / Thin Server. We decided that most of the 

Figure 17. Reputation systems from Yahoo 
Design Patterns Library. Retrieved on 
July 27 2009 from Yahoo.com, http://
developer.yahoo.com/ypatterns/parent.
php?pattern=reputation



59

work would be done in the client, with the server playing as minimal 
a role as possible. The main reason for this was to support easy 
deployment of share servers and to reduce the hardware requirements 
related to scaling the server component to supporting larger numbers 
of users. Our current experience with carrying out experiments 
‘in the wild’ make us sensitive to the fact that when one proposes 
a tool for community use and invites use of the tool there may be 
an opportunity for continued use of the ‘experimental’ tool by the 
community once the study is complete. We had always planned on 
releasing share as an open source project and wanted to minimize the 
requirements of setting up a server and thus allowing for continued 
use. The following subsections describe the design of the system we 
built as well as some implementation notes.

Share is built using a client-server architecture with almost all 
the computation happening on the client. The server acts to provide 
authentication for clients and as a database to and from which 
documents and data files associated with projects are pushed and 
pulled. 



60

ShAre Server

Share’s server component consists of two main parts: a 
CouchDB database and a small Sinatra based ruby web application 
that controls authentication when pushing documents to the server. 
CouchDB is an HTTP accessible, schemaless, document-oriented 
database (“Apache CouchDB”, 2008); it is essentially a key value store 
with strings for keys and JSON9 documents as values. A number of 
CouchDB features led us to select it for our server-side persistence 
solution, including a few that would allow for relatively easy scaling to 
larger numbers of users without complex infrastructure. 

Firstly, it is designed to support highly concurrent loads. 
Written in erlang, a programming language at developed at Ericsson 
to build highly concurrent applications, it’s multi-version concurrency 
control architecture allows writes to be performed to the database 
without blocking reads, yet presenting a consistent state to clients. 
Our previous experience building client-server web applications 
informs us that database access is often the bottleneck to achieving 
good communication throughput between clients and the server, 
CouchDB is a database designed with these issues in mind.

Secondly CouchDB is accessible over HTTP (HyperText 
Transfer Protocol), this allows the clients to talk directly to the 
database with a simple protocol using http libraries commonly 
available in any modern programming language. By allowing clients 
to talk directly to the database we do not have to maintain an 
intermediate layer to handle these requests supporting out thick-
client thin-server design goal.

Thirdly, CouchDB includes the concept of views, these are 
map-reduce10 jobs written in JavaScript that allow us to compute 
values based on the data stored in the database. This processing allows 
us to eliminate duplication of data when we want to be able to query 
the data in multiple ways (for example finding out which projects a 
user has commented on, as well as which users have commented on a 
particular project would require a bi-directional map (or storing two 
maps) but with CouchDB we can compute one from the other on the 

9  JSON is JavaScript Object Notation a lightweight data-interchange 
format, www.json.org

10  “MapReduce is a programming model and an associated 
implementation for processing and generating large data sets. Users specify a map 
function that processes a key/value pair to generate a set of intermediate key/value 
pairs, and a reduce function that merges all intermediate values associated with the 
same intermediate key.” (Dean, Ghemawat, 2004)



61

fly). These views make the basic key value store a bit more versatile.
Finally CouchDB supports easy replication of data between 

instances of CouchDB, this would allow individuals or groups to set 
up their own share servers and periodically synchronize with other 
servers (essentially forming a peer network of servers), while we didn’t 
need this for our initial evaluation it is nice to have and allows the 
underlying data storage architecture to be spread throughout the 
community if so desired.

Although CouchDB is still in alpha (we were using version 
0.9) it is fairly stable and quite functional, however it does not 
currently support any means of authentication and because we 
wanted to allow clients direct http access to read from the database 
this meant that we would be giving clients uncontrolled write 
permissions to the database as well. This is obviously undesirable as 
it allows anyone with an http client (including common command 
line tools like curl) to edit the database. Additionally because we had 
always planned on open sourcing the code, it would allow individuals 
to modify the client such that they could make modifications to 
other people’s documents and have those pushed out to the server. 
To work around this we setup the nginx11 web server to work as a 
reverse-proxy in between the clients and the database, passing the 
http requests on to the database, however we configured it to only 
allows GET requests coming from sources other than localhost to 
pass through to the database (effectively limiting unfettered access to 
the database to just reads). Share clients thus submit POST requests 
(adding or updating documents), to a ruby application running on the 
same machine as the database that first does password authentication 
for the request then forwards it to the CouchDB instance, passing 
the result back to the client. While we lose some of the concurrency 
benefits provided by erlang when dealing writes, being such a simple 
operation it is quite easy to scale, and we can still have clients reading 
from the database while we are writing to it (it is actually fast enough 
for our current needs that we currently run the website for share in the 
same ruby process). Before downloading share users make an account 
on the website to create a username/password combination.

11  Nginx (pronounced engine-x) is a small fast web server similar in 
function to Apache. http://nginx.net/



62

We store a several different types of ‘documents’ in the 
database. Namely:

A document for each code file in 1. share

A document for each data file included in a project2. 

A per-project document recording comments on that project3. 

A per-project document of bookmarks on that project4. 

Documents are inserted into in the database with a 
Universally Unique Identifier (UUID) as their key, these UUIDs are 
generated by the clients, this allows documents to be created and 
ID’s to be generated without being connected to the server yet avoid 
conflicts when syncs are done with the server, allowing the client to 
work completely disconnected from the server, supporting our non-
disruptiveness design goal (you could program in share just as you 
would in processing, on the bus or at the beach). Simple mappings are 
used to create unique keys for the documents associated with projects 
or files. For example the document recording comments for a project 
with ID ‘foo’ will be given the key ‘foo_comments’, allowing easy 
retrieval. 

Figure 18. “Share” client server architecture. 



63

ShAre client

The share client is the program that the user primarily 
interacts with; the following subsections will describe the 
functionality of various parts of the software. The client is written in 
the Ruby programming language, using its Java implementation, 
JRuby. Using JRuby allows us write code in Ruby yet easily leverage 
mature java libraries such as Swing (a GUI toolkit) or Lucene (a 
full-text search engine). A high level overview of the subsystems 
within the client is displayed in the table below.
 Non User Facing Subsystems

Synchronization Pushes changed documents to the server while pulling 
newly updated documents from server.

Toolchain Responsible for taking project source and turning it into an 
executable. We currently include a processing toolchain.

Graph Model Internal model of the users, projects and files. We also 
dynamically build a model of relationships between 
projects.

Search Engine Provides full text search to users and also used as a query 
engine internally in building the graph model.

Persistence Serializes and deserializes the code and metadata stored 
by the code editor to and from disk.

 User Facing Subsystems

Code Editor Allows users to write and edit code, keeps track of 
provenance of code. Provides UI for commenting and 
bookmarking.

File Browser List based UI for browsing through users and their 
projects.

Search Window Full text search of all code generated by users of share.

Visualization Interactive visualization of the relationships between 
files.

Our discussion of the client in this chapter will focus on the 
users’ experience of using the software and less on how the backend 
works.

Table 1. “Share” client 
subsystems.



64

File Browser

The file browser is the first thing a user sees after logging in 
to share and is their entry way to opening other types of windows 
including the code editor or search panes.

The file browser displays two lists to allow users to look 
through other users’ projects (sketches), and a description panel that 
displays metadata such as how big the project is (in files and lines of 
code), how many incoming links (files from which it has borrowed 
code from) and outgoing links (files to which it has contributed code) 
the project has, how many times it has been bookmarked as well as a 
screenshot if the user has uploaded one. We also parse the comment 
at the top of the main file in a project to use as a description. While 
we do not provide a global list of the most ‘popular’ projects, when a 
user is browsing they can get a sense of a projects’ relative popularity. 
This is one of our forms of ‘subtle’ reputation.

Double clicking on a project name will open it in the editor. 
The file browser’s toolbar also has buttons for creating a new project, 
visualizing a project’s connections in the network browser, searching 
for code within the code base, and performing synchronization 
with the server. This last button does not actually need to be used as 

Figure 19. “Share” File Browser.



65

synchronization is automatically performed every five minutes, but is 
there in case the user wants to force synchronization (for example just 
before exiting).

 



66

Code Search

Share provides full text search of the entire code base using 
the Lucene text search library (“Apache Lucene”, 2006). The code 
search window allows users to search for code using standard boolean 
search operators; wildcards can also be used. Search results can be 
previewed in this window and projects directly opened from it.

Figure 20. “Share” Search Pane, search term is 
highlighted in results.



67

Editor

The editor is at the core of share’s functionality, it provides a 
means to edit code and also the mechanism to track the movement 
of code. As far as code editing features it is a fairly simple code editor, 
our goals in this regard was to reach parity with the editing features 
of the processing IDE, which also provides a fairly simple code 
editor. It provides syntax highlighting and smart indenting, though, 
unlike the processing IDE it does not provide brace matching or an 
automatic formatting tool. The processing IDE also provides tools like 
a color picker and a font creation tool that we do not. Like processing, 
the editor supports tabs (multiple files in a project) and has a ‘play’ 
button to easily compile and launch an application. 

Figure 21. “Share” Code Editor.



68

The editor is also able to record attributes on each character 
of the text such as which user wrote it, what document it originated 
from and in the case of code that was pasted in, the time and date 
that it was pasted. As we mentioned previously all documents and 
projects are given universally unique identifiers (UUID’s), these 
UUID’s are also used to name the files when written to disk, this also 
helps prevent issues with the different file names permissible across 
the operating systems we support. The UUIDs are what the client 
uses to refer to the documents allowing them to be renamed freely 
without affecting our ability to track their content. Metadata such as 
the human readable name of the document of project are also stored 
in the files when they are saved.  The text is written to an XML based 
format that lets us persist and restore the attribution information. An 
example of the representation underlying the code in the editor is 
given below. 

<document id=”N7b8270d_9f55_4534_
a8cb_126f6f74e922” sketch_id=”N0bcf045_cdfe_4810_
b934_a60ea086f8e3” name=”main” synched=”true” 
primary=”true” modified=”Sun Jun 14 00:17:11 UTC 
2009” user_name=”yannick” language=”processing” 
sketch_name=”prince_two”>
<content>
  <npe_code source=”N7b8270d_9f55_4534_
a8cb_126f6f74e922” >
  //Import all Phys2D libraries
  import pphys2d.bodies.*;
  import pphys2d.joints.*;
  //Create a PPhys2D world
  PPWorld world = new PPWorld();
  </npe_code>
  <npe_code source=”Ndf1b1f3_f470_4928_abf0_
c5d9aa8bd287” inserted_at=”Thu Jun 11 14:37:20 
-0400 2009” >ArrayList </npe_code>
  <npe_code source=”N7b8270d_9f55_4534_
a8cb_126f6f74e922” >planets;</npe_code>
</content>
</Document>

This representation allows very fine-grained representation 
(down to the character level) of where code came from. This allows 
the editor to perform code highlighting based on the [human] source 
of the code, as in the screenshot below. 



69

In this screenshot the background color of the text is 
determined by which user it came from (text with a clear background 
was created by the owner of this document). Upon startup colors are 
assigned to all users in the system (again this is a local assignment) 
and persist throughout a coding session, that color will consistently be 
used to represent that user, his projects and his code throughout the 
software. This source-highlighting mode can be toggled on and off 
using a button on the toolbar.

The XML representation also allows us to use Lucene’s full 
text search to determine the relationships between files as we load 
them from disk. For example to find all the documents that have 

Figure 22. “Share” 
Code Editor in source 
highlighting mode.



70

outgoing links from a particular document foo (i.e. documents that 
have borrowed code from ‘foo’) we can ask Lucene to search for 
files with <npe_code source=”ID of foo”> in the underlying 
representation. 

Permissions

By design users are not allowed to modify other users’ code, 
however to support quick experimentation with code of interest, the 
editor will allow you to make non-persistent changes to projects that 
are not yours, and to run the code with those changes. The editor lets 
users know when their edits are non persistent.

Explicit References

Another feature of share is the ability to make explicit 
references to other projects, this is because we believe that there are 
things that one may want to attribute others for that aren’t in the 
code per se, such as ideas, inspiration and maybe even techniques 
that individuals may get as they look at other peoples code. This is 
done using a special syntax directly in the file, the syntax consists 
of using the @saw keyword and then giving a username/project 
pair. The following code “@saw yannick.rebound” will create a link 
between the document it is written in and the “rebound” project 
created by user “yannick”. One can optionally append a filename to 
link to a particular file within the project such as “yannick.rebound.
physicsEngine”, we chose the word @saw so that it could be easily 
used in a sentence that would describe the reason for the reference, 
for example “I @saw yannick.rebound and figured that the ball could 
get faster each time it hits the wall”. We experimented at first with a 
variety of keywords that could be used to indicate different kind of 
links but decided that it would be best to first release the tool and see 
if a lexicon emerged among users describing the kinds of references 
people would like to make, thus @saw also had the advantage of being 
a highly flexible keyword. 



71

Comments 

Share allows for discussion of code to stay near the code. Each 
sketch has its own comment thread accessible from the code editor. 
Inspired by Wikipedia’s ‘talk’ pages, the idea of having persistent 
conversation about code happen in the context code itself is one we 
are very interested in but are just scratching the surface of in our 
current implementation. You currently need to be online to post or 
view comments.

Figure 23. Comment pane for “box3d” sketch.



72

Bookmarks

Share also allows individuals to bookmark sketches that they 
find interesting or want to keep a reference to (it is also another 
‘subtle’ reputation marker - while there are no global lists of what has 
been bookmarked the most, you can see how many times something 
has been bookmarked). A small dialog is used to allow users to 
bookmark projects and optionally add a small annotation to the 
bookmark. Bookmarks and their annotations are publicly visible to 
anyone using share.

Individuals can browse their bookmarks and the bookmarks 
of others using the search pane. The following query is used to see 
one’s bookmarks “@bookmarks”

Figure 24. Bookmark pane for “solarPong” 
sketch.



73

You can also view someone else’s bookmarks using this query 
by appending their username, thus “@bookmarks yannick” will display 
the bookmark list for the user “yannick”. You currently need to be 
online to post or view bookmarks.

Figure 25. Search pane being used to display 
bookmarks for the logged in user.



74

Synchronization

The synchronization subsystem is responsible for pushing 
local changes from the client and pulling new and updated 
documents from the server, it runs automatically every five minutes. 
It works by maintaining a list of UUID’s of the documents and their 
corresponding revision numbers. Revision numbers are given to 
documents by the CouchDB database and are updated automatically 
whenever a document is updated on the server. Thus if the local client 
either does not have a revision number for a document, or it has a 
number that is different from what is reported by the database as the 
latest revision number, the document is pushed to the server or a new 
version is downloaded respectively. At every sync the client queries 
the database for a list of key value pairs containing all the ID’s of all 
the documents stored in the database and their revision numbers, 
thus the client can also find out about documents that it has not 
seen before. When a document is downloaded its revision number 
is updated and written to disk. This mechanism allows us to only 
download documents that have changed. A similar mechanism is used 
to synchronize arbitrary data files that are used by projects.



75

The Network Browser

The network browser is an interactive visualization of the 
relationships between the projects in share and their owners. It acts 
as another form of visible (yet not explicitly ranked) reputation, 
as one can easily tell whether a project has contributed code to a 
lot of other projects. Given any project or user, a spanning tree is 
built of that entities’ relationships in the overall network graph. 
The tree is built using a breadth first search, the depth of which is 
limited to six (greater depths would not be visible in the current set 
of visualizations). The process of creating the tree from the more 
general graph potentially eliminates some of the links with the graph, 
however we feel that this representation more clearly shows the 
elements that are most closely related to the selected node and also 
provides a clear means to browse the relationships in the graph by 
successively moving outward without us having to worry about trying 
to fit the whole graph on screen. The code editor and file browser 
allow users to visualize the connections for any user or project. The 
visualizations were implemented using the processing library (yes that 
is the same processing as the language that share currently supports, 
one can also use the processing api as a standard Java library, and 
thanks to JRuby we get to use it while still writing ruby code!)

There are two visualizations provided by the network browser, 
the first is a radial tree view with the selected entity placed in the 
center, the algorithm used is a partial implementation of Yee et al’s 
(2001) layout algorithm for radial graphs that we ported from Jeffrey 
Heer’s “prefuse” visualization library (Heer, Card & Landay, 2005) 
(our implementation does not animate the motion of the nodes 
using polar coordinates). In this visualization successive rings display 
entities directly related to an entity on inner ring. Relationships 
shown include those where code has moved between projects, 
those where ‘@saw’ references have been made and creator/project 
relationships. In the case of code movement links, the arrowhead 
points in the direction that code traveled and the thickness of the 
arrow is proportional to the relative proportion of borrowed code in 
the borrowing project; thus if a project gets a lot of its code (relative 
not absolute) from another, the line will be fairly thick. We had 
started with all arrows being the same thickness as we were wary of 
the meaningfulness of lines of code as representing the ‘magnitude’ of 
the contribution (sometimes one does find small but critical amounts 



76

of code), however on showing this to early testers the feedback we got 
was that people did want some notion of the ‘importance’ of the link 
and the amount of code involved. @Saw links are drawn with dashed 
lines, and creator/projects are drawn with faint dotted lines, we also 
use color to relate project icons to the icons of their creator. The two 
are rendered in the same color (the logged in user is always rendered 
using black) and this is the same color used in the source highlighting 
view in the code editor. The icons for projects also display the total  
number of incoming and outgoing links that they have, remember 
that since we are looking at a tree built from the perspective of the 
selected node, there are cases when a distant nodes’ linked nodes are 
already in the graph and as a tree cannot have cycles, this second link 
cannot be drawn. 

As the user clicks on nodes they are smoothly animated to 
the center and more distant nodes move closer to the center and 
additional nodes added to the edges if necessary.  Allowing the user 
to progressively move closer and closer to the edges of the original 
tree. Originally a user could double click on the icon for a project to 
open it in the code editor, however two days before the start of our 
public release of the software we discovered a threading issue between 
the windowing toolkit (Swing) and the library driving the animation 
(Processing) that caused the application to freeze when opening large 
files from directly from the network browser. We were unable to solve 
the problem and had to disable this feature for the release. This meant 
that if one was interested in seeing the code for the project one had to 
open it through the file browser. 

This visualization is also aimed at supporting discovery of 
previously unknown resources, this is why we do the breadth first 
search to a depth of six and expand user nodes as we find them, 
displaying other work created by users in the selected nodes graph. 
As you can see in the screenshot below there are a lot of nodes that 
are only indirectly related to the selected node, while we did not 
implement any filtering to control the number of nodes shown in 
the visualization this would become more and more necessary as 
more projects were created in the tool. One could use any number of 
metrics to filter out incidentally related nodes, including recency of 
edits, code similarity, popularity metrics and so on. 



77

Users can toggle a second visualization that is much simpler 
than the radial browser, which simply answers the question “what 
projects are contributing to and borrowing from a project”. It thus 
shows elements that are only one step away from the selected node. 
Like the radial browser when a new node is selected it smoothly 
animates to the center and any new related nodes fade in and animate 
into place.

Figure 26. Network browser visualizing a 
netowrk of sketches.



78

Figure 27. Network browser in secondary mode, 
displaying only incoming and ourgoing links to 
focused sketch.



79

Runtime

Share ships with the processing compiler and runtime, however 
it is architected in such a manner that it can easily support the 
runtimes and toolchains of other programming languages. When a 
project is launched in share. We do a small amount of preprocessing to 
first strip the metadata that we maintain for each document, we then 
create a folder with all of the source and data files as the compiler 
would expect (essentially like it had been created in an ordinary 
text editor). We then pass this older to the processing compiler and 
runtime, which takes care of the rest. 

When a user is running one of their own projects, our 
preprocessor for processing code also adds a little bit of code to the 
project to enable the user to press a key that will take a screenshot 
of their project and name associate it with the project so that it can 
be seen in the file browser. When a running program is terminated, 
share checks for any new screenshots and imports them into its folder 
structure for later synchronization with the server.

Security Concerns

One of the issues in a system like share is that when a user 
run another user’s sketch they are essentially running code from 
some “random person on the internet”, this is definitely a source of 
concern and while one mitigating factor is that one has the source 
code to any program one would run right in front of them, it doesn’t 
adequately protect users who may not be experienced enough to 
detect malicious code. It would also be time consuming and error 
prone even for advanced users. One advantage of processing being a 
language built a top the Java Virtual Machine ( JVM), is that Java 
has strong mechanisms to restrict the actions of programs running 
in it. All programs run from share are run in a sandbox managed by 
the JVM, the security policy we set when launching sketches only 
allows them to read and write to files in the directory from which 
they were launched, network operations are also blocked as is the 
ability to launch other programs. This lets us provide a great amount 
of safety to users of share however it does prevent some non-malicious 
programs from running, for example those that want to use the 
computers webcam or (non-maliciously) connect to some online 



80

resource. We thus provide an option to run programs outside of the 
sandbox, though users are warned to inspect or otherwise ensure that 
programs they run in this ‘trusted’ mode are indeed not malicious.



81



82

In order to evaluate our design we made our system available 
to a small number of users for a two-week period. This chapter 
describes the framework in which we carried out our evaluation as 
well as responses from users to a survey provided once the two-week 
period was complete. Our goals in deploying the application was 
to gauge user response to our design choices as well as answer the 
research questions set forth in chapter one of this thesis. It is on the 
users’ responses to our survey that this chapter most strongly focuses; 
our survey questions focus on users’ impressions of the attribution 
features provided by share, the usefulness of the ability to track 
re-use of one’s own code and the disruptiveness of the community 
oriented features provided by share. We also had opportunity to ask 
participants about their previous code sharing experience and the 
motivations and obstacles in doing so. Overall we are able to report 
that users valued the feature set provided by share and that it did in 
fact reduce their barriers to sharing code.

Chapter 7. The Share Experiment: Results & Discussion



83

experiment deSign

While systems such as the one proposed in this thesis are best 
evaluated in the context of long term use within a community, time 
constraints and a desire to get initial feedback on our prototype led us 
to propose hosting a themed competition to evaluate our design. The 
purpose of the competition structure and theme was to scaffold the 
creation a small scale community of practice which provides the loose 
associations and shared interests we would expect to see in larger 
communities of practice but does so in a manner that makes the short 
timeframe analysis more practical.

Participants in our competition, dubbed The Share 
Experiment, were asked to create works ‘Inspired by Pong’12, this was 
the only constraint given with respect to creative work. Participants 
were also told that they could interpret the theme quite broadly 
and their creations did not necessarily even have to be games. The 
participants were given two weeks over which to work on their 
submissions, we felt that the two-week period would be sufficiently 
long to make apparent the asynchronous nature of the interaction we 
would expect in longer-term deployments share. Of the 16 participants 
that ultimately participated in the competition 11 submitted pieces for 
consideration by the judges (participants could create as many pieces 
as they wanted during the competition but could only select one to 
submit for judging). Prizes were offered as incentive for participation 
with four ‘grand’ prizes on offer including two Apple iPod’s and 
two Arduino13 Kits. While a competition was used to recruit and 
encourage participants to actively use our software, this project is 
much more about cooperation than competition so we also stated that 
a $25 gift certificate would be awarded to any user whose code was 
used by a winning submission. This meant that a person borrowing 
your code simply increases your chances of winning something, and 
was in very much in keeping with the spirit of share.

Participation levels varied among users with some users 
being very active and others who only spent a few days using share 
either at the beginning of the experiment or towards the end. At 
the end of the competition, participants were asked to fill out a 
questionnaire on various aspects of their experience, eleven of the 
sixteen participants completed the survey, the survey used is included 

12  Pong is an early arcade game. http://en.wikipedia.org/wiki/Pong
13  Arduino is an electronics prototyping platform http://www.arduino.cc/



84

in Appendix A of this thesis. The investigator also interacted with the 
participants throughout the course of the event, the results discussed 
in this chapter come from three main sources, the metadata on code 
sharing collected by the software (data from all sixteen participants), 
the participants responses to the questionnaire (from the eleven 
respondents) and the investigator’s correspondence with participants 
during and after the competition. Our discussion will try and 
incorporate the responses of participants in their own words as much 
as possible.

recruitment And pArticipAnt demogrAphicS

Individuals from the processing community were recruited 
over the Internet and invited to volunteer for the study. This does 
imply some self-selection bias with regards to willingness to share 
code, however we do not feel that this is a problem as we explicitly 
situate our work within the sharing economy, that is to say we are 
not contrasting it with proprietary models but rather aim to support 
those already participating in sharing economies. A call was made to 
solicit 30 participants by making a post on the processing.org forums 
as well as submitting our call to a widely read art and technology blog 
Networked Performance (Green, Thorington, Riel, 2004) from which 
we received over 70 applications. After sending out 34 invitations 
we received 28 confirmations, however only 16 of the confirmed 
participants downloaded and used the software. 

Our criteria for selecting individuals to participate in the 
study were primarily along two axes, experience with programming 
and the individuals’ relationship to processing in their work/study 
life. Specifically we asked applicants to rate themselves as beginner, 
intermediate, or expert. We also asked applicants what occupation 
they currently held and whether they used processing in their work/
study life. Our aim was to get a broad range of participants along 
both axes as we felt that the value proposition for share would be 
different for beginners vs. experts and we were also interested in the 
different motivations and barriers to sharing that would be present 
between those that use processing primarily casually vs. those who use 
it in their professional life. Participant experience breaks down as 
follows.



85

Beginner          3
Intermediate          10
Advanced          3

With regard to professional use we coded responses into 3 
categories, academic (teaching or studying), commercial (including 
independent artists but not including teaching) and casual use. While 
participants may use processing in more than one category we assigned 
each participant to one of them, picking a dominant category 
according to the following rules; membership in the commercial 
category trumped membership in the academic category, which in 
turn trumped membership in the casual category. We did this because 
we felt that commercial factors would likely be the strongest ones 
with respect to code sharing barriers. Participant breakdown along 
this axis is as follows.

Academic  6
Commercial  6
Casual   4

However given the low number of responses we received to 
the survey we do not feel that we are able to make strong conclusions 
with regard to the effect of professional relationship to processing on 
response to the feature set provided by share or the difference in value 
proposition to individuals across levels of experience. We will however 
try and discuss the various issues brought up by users across these 
categories.

The participants were also physically distributed across 
different parts of the world, with participants in France, Britain, 
Germany, the U.S.A and Indonesia, apart from interacting through 
the software, an Internet Relay Chat (IRC) server was set up for the 
participants to use, however due to time zone differences, there were 
never that many people in the chat room at once. It was however 
reported by some of the participants that the chat room did increase 
the sense of community allowing individuals to become more familiar 
with their fellow participants. The chat room also served as a source 
of live technical support, both for programming techniques (provided 
by the investigator and the other participants) and issues with the 
software itself (provided by the investigator).



86

prior code ShAring experience

Participants were surveyed with regards to their code sharing 
experience prior to using share, particularly with regard to how often 
they borrowed code from others in creating their own work and 
whether they had previously made code they had written publicly 
available to others and the motivations and barriers in doing so.

■All respondents previously reported borrowing code from 
others at some point in time [Q11], the figures below show how often 
they reported doing so (fig 28) and their relationship with the person 
creating the code (fig 29). We can see that among these participants it 
is fairly common for an individual to borrow code from someone that 
the individual does not have a personal relationship with [Q10].

 

Extremely Common

Very Common

Occasional 

Rare

Never

0 1 2 3 4

0

2

4

6

8

10

Stranger Colleague  Friend

Figure 28. Responses 
to question 11, 
“How common of 
an Experience is 
Borrowing Code”.

Figure 29. Responses 
to question 10, “What 
was your relationship 
to the person whose 
code you borrowed”.



87

■Seven of eleven respondents reported having made their 
own code publicly available (either posting it on their blog/website, 
releasing libraries or posting code in response to a question asked on 
the processing forums) code. Reasons participants reported for sharing 
their code [Q14] include:

Feeling that one ought to give back

 “I have. I use a lot of open source tools, so I feel it’s good karma 
to keep my source open as well. I have learned so much from look-
ing at the code of others, I hope someday someone learns something 
from my code.”

A desire to see what other people do with one’s code

 “Yes, I have. my motivation to do so is to let people doing 
experiment with my code, so that people can extend and make the 
sketch better. also, there might be some other publicly available 
people code in my sketch, I want to pass it along to other people.”

Helping others solve their problems/helping the 
community (e.g. questions posed in the forums)

 “Very rarely. if so, it was in forums where I posted parts of my 
own code because it was what others have been asking for.”

These responses correspond with what we see in the broader 
open source ecosystem, with individuals sharing for ‘good karma’, 
or the pragmatic reason of getting more ‘eyeballs’ (and thus more 
improvements) onto a piece of code, or direct assistance to other 
member of the community.

■When asked about barriers that prevented them from 
sharing their code [Q15], responses included:

Concern for ‘theft’

 “Afraid someone will steal my ideas. Not comfortable with 
someone making money off of something I give away for free.”

 “I don’t mind sharing things. What I don’t like is when a code 
is being used without acknowledge who created it. without saying 
thank you or stuff like that […] I think issues might arise when 
money gets involved: for example it takes me one year to create a 
very good code bla bla and the next day someone makes loads of 
money by using it”



88

This worry about being ‘ripped off ’ is a tension that exists for 
many when releasing software openly, whether or not one makes a 
living from it. We feel the issue of ‘stealing’ is directly related to the 
relationship created between the two parties when the appropriation 
is made, when there is attribution it is like homage, without, it 
is closer to plagiarism. When ‘gifts’ are moved from the sharing 
economy to a market one, it may break the norms assumed by a 
participant in the former and can strain the relationship between 
the individuals involved. This underscores the importance of creating 
ties (even weak ones) between members of sharing communities that 
provide opportunities to better negotiate the tensions that may arise 
with respect to these feelings. 

Insecurity about code quality and publicly displaying 
substandard work

 “Probably insecure about how good my code is, since I don’t 
consider myself an expert by any means.”

 “Bad written code! I’m self taught and had an hard time to 
understand [Object Oriented Programming], sharing code is like 
writing, and writing poorly with bad grammars and spelling is 
not something you want to show to everybody!”

Interestingly, another respondent with the same concern 
commented that because share makes code sharing automatic it does 
not feel like one is ‘releasing’ software but rather it is clear from 
the context that you are looking at works in progress in someone’s 
‘sketchbook’. This comment aligns with one of the design goals of 
share, to create a good shared workspace as opposed to an exhibition 
space, though it was a pleasant surprise to see that for some it actually 
reduced the pressure burden related to making one’s work publicly 
visible. We hope that like the Impressionists described in chapter 
two, this opportunity to work ‘side by side’ is mutually beneficial to 
participants as they develop their craft.

Desire to keep certain things private

 “I think sometimes there are ideas behind code that can be 
shared, but at some point, the thing that makes your project unique 
may not need to be shared. The key part of your code, maybe others 
should have to replicate it, not just copy it, and in doing so they 
may benefit more.” 



89

 “I don’t like to share code from my artistic work.”

These last two comments point to a much more complex 
relationship with code ownership, as stated we picked the art domain 
because we though it offered suitable challenges to what we were 
trying to do, the identity of artists that make art from code is tied 
intimately to that code. It is thus expected that there is an internal 
resistance to give it up and make one’s “secret sauce” available to the 
world. While it is something we would be interested in investigating 
in future, a proper treatment of this topic would be too large an 
undertaking in the context of this thesis.

Other reasons included contractual agreements, for which 
the choice is likely out of their hands, and for others lack of a place 
to host their work (so while there are increasingly more options to 
display one’s processing work this may suggest that it would be worth 
integrating some upload mechanism directly into the tools — similar 
to the manner in which scratch does)



90

experience uSing ShAre

Quantitative data

 Since in order to function correctly, the software tracks the 
origin of all the code produced by the participants, it also provides a 
rich data source for quantitatively describing how code was reused 
over the course of the competition. Excluding sketches (projects) 
created by the investigator, 65 sketches were produced by the 16 
participants over the two week period, 12 sketches were removed 
from this analysis because they either contained no code or were 
duplicates of another sketch created by the same participant to 
overcome implementation bugs in the software (during the course 
of the competition some files became corrupted and were no longer 
editable by their owners, to continue working on these sketches the 
participants would duplicate them into new projects), thus 53 projects 
were used in this analysis, with each user creating an average of 3.31 
projects (standard deviation=2.84, median=3), the 53 projects had 
a total of 154 files. The projects included the main submissions the 
participants were working on as well as many small sketches to test 
a particular idea or piece of code. We include these ‘side’ sketches 
because we feel that they are an important part of the process of 
coding, and a valiable piece of what users get to see when looking at 
each others’ work. Our presentation of this data is mainly to indicate 
the level of activity in share over the two-week period; we do not feel 
that we have enough data for this to be particularly predictive over 
larger communities or longer time periods. It is included just to give 
some context in describing what happened over the two weeks.

The table below (table 2) summarizes the measures of activity 
encoded in the code files.

Percent content borrowed refers to the percentage of 
characters (not including whitespace) in projects that was borrowed 
from projects created by users other than the creator of that project 
(i.e. it excludes code that was ‘borrowed’ from other projects by the 
same author). 

In degree and out degree measure the number of 
incoming and outgoing links to projects created by other users. An 
incoming link from project A to project B indicates that project B 



91

borrowed code from project A. An outgoing link from project M to 
project N indicates that project M contributed code to project N

 Number of source users counts the number of users from 
which code is borrowed in that project.

The charts below show the distribution of some of the data 
above across all 16 individuals. Participants are coded P1-P16.

Across all Projects (53 Projects)

Percent content borrowed 13.925%

Projects with at least 1 incoming link (i.e. borrowers) 32.075%

Projects with at least 1 link (incoming or outgoing) 60.377%

Average Std Deviation Max Min

In Degree 0.887 1.296 8 0

Out Degree 0.774 1.826 8 0

Total Degree 1.660 2.084 8 0

Number of source users 0.663 1.143 6 0

Table 2. Code reuse and connection statistics across 
all 53 projects.

0 

2 

4 

6 

8 

10 

12 

P01  P02  P03  P04  P05  P06  P07  P08  P09  P10  P11  P12  P13  P14  P15  P16 

Figure 30. Distribution of number of projects 
created by each user.



92

These graphs show that while there are quite a number of 
users (6) who did not borrow anyone else’s code, all but one user 
either borrowed from or contributed to some other users’ work.

0.00  0.00  0.00  0.00  0.004  0.079 

13.81 

83.91 

0.91 

8.95 

24.54 

63.76 

16.10 

32.07 

4.39 

64.07 

0.00 

10.00 

20.00 

30.00 

40.00 

50.00 

60.00 

70.00 

80.00 

90.00 

100.00 

P01  P02  P03  P04  P05  P06  P07  P08  P09  P10  P11  P12  P13  P14  P15  P16 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

P01  P02  P03  P04  P05  P06  P07  P08  P09  P10  P11  P12  P13  P14  P15  P16 

In Degree  Out Degree 

Figure 31. Distribution of the percentage of code 
each user borrowed from other users.

Figure 32. Distribution of in and out degree 
across all projects created by a particular user.



93

We can also look at how the data on borrowed code is 
distributed across all 53 projects (fig 33).

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0  10  20  30  40  50 

Figure 33. Percentage of borrowed charachters 
across all 53 projects.



94

 It is also useful to look at the data among projects that have 
at least one incoming or outgoing link as it gives a sense of how much 
code is shared within the connected components of the network. 
While these measures overestimate the ‘usefulness’ of the code base 
(in terms of the amount code that a user was directly able to re-use) 
by filtering out the ‘noise’ associated with content that has not was 
not re-used by anyone, it is interesting to see the amount of activity 
between projects with some interdependance. 32 of the 53 projects 
have at least one link and form 5 connected components in the overall 
graph. The largest connected component contains 21 projects, with 
the next largest component containing 5 projects, and the remaining 3 
components having 3 or fewer projects in each.

Across projects that had at least one incoming or outgoing link (32 Projects)

Percent content borrowed 20.981%

Average Std Deviation Max Min

In Degree 1.2813 1.464 8 0

Out Degree 1.469 2.170 6 0

Total Degree 2.75 2.048 8 1

Number of source users 1.552 1.310 6 1

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0  5  10  15  20  25  30 

Table 3. Code reuse 
and connection 
statistics across projects 
with at least one 
incoming or outgoing 
link.

Figure 34. Percentage 
of borrowed 
charachters across 
projects with at least 
one incoming or 
outgoing link.



95

 

 This data indicates that there was reasonable usage 
of the features provided by share. With regards to the data on amount 
of code borrowing it is in line with what we would expect; given that 
the projects are independent we would not actually expect to see large 
percentages of borrowed code in most cases. 

Explicit (@saw) References

The “@saw” syntax for making explicit references was not 
used much in the course of the competition with only nine uses across 
all the projects.  These mainly referenced interesting ideas individuals 
saw in other people’s code, such as using a source file to store project 
configuration or ideas for doing collision detection and in one case 
inspiration to move from a monochrome color scheme to full color. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32 

Out Degree  In Degree 

Figure 35. Distribution of in and out degree 
across projects with at least one incoming or 
outgoing link.



96

Survey Response

Even more important than the quantitative data encoded 
in the software are the participants’ reports of their experience 
using share. Our hypothesis was that automatic tracking and 
attribution of code would lower barriers to sharing code and provide 
encouragement to share code with others, we also were interested in 
what kinds of benefits individuals would receive from having others’ 
code available to them (though those are well established in the open 
source literature we were curious as to whether the artistic context 
would add or take away from this). The data and quotes in this section 
come from the eleven responses to the survey that we received.

■With regard to the value of the automatic attribution 
provided by share [Q20] all respondents responded positively to this 
feature, saying

“When releasing code, you don’t need really know if it has its own 
life beyond your project. It’s stimulating to see it travel around.”

“I love the code tracking and highlighting so that I can follow the 
chain back to see how my implementation of something I copied 
can improve.”

“It helps that it does the attribution for you, so you don’t have to 
remember which snippet came from where, or be constantly docu-
menting it, which can interrupt the flow of coding.”

“It is nice to be able to trace ideas and code. The @saw tag was use-
ful for me, because it allowed me to write notes for myself so that I 
would remember where I saw an idea and how they implemented 
it.”

“It is a good way to learn about other people through what they do. 
It is also a good way to see how helpful/useful the stuff you produce 
is.”

“it’s a good thing and makes you feel like you are not working on 
your own but collaborating with many people without the sense of 
“being stealing” someone else’s stuff ”



97

This is exactly the response we were hoping for, there was 
value in simply seeing your contributions being used by others, 
and also pragmatic value in seeing what had been done with it. 
The display of attribution also increases the sense of community 
(and reduces anxiety around ‘stealing’). We also see that it supports 
something people are doing already, i.e. documenting their sources 
when they borrow code. Share makes this process seamless and also 
passes this information back to the original creator. 

■When asked whether the attribution features in share 
reduced barriers to sharing one’s code [Q19a], responses were also 
quite positive. 

Strongly Agree

Agree

Neither Agree nor Disagree

Disagree

Strongly Disagree

0 1 2 3 4 5

■The responses on the usefulness of being able to track your 
own code [Q17] largely following the answers given for [Q20] with 
one user saying that “It’s pleasant … it can lead to new understanding 
to see your code in other contexts”. However not all respondents were 
able to comment as some had no code which was borrowed by others. 
The feature also became more useful as the competition progressed 
with a number of participants saying that it only became really useful 
in the “last days” of the competition.

■With regard to using the visualization to track the 
movement of other peoples’ code [Q18], 6 out of 11 respondents said 
they found it useful. The main use of the visualization with regard 
to other peoples’ code was seeing what code was popular within the 
community and thus warranted further investigation, respondents also 
found watching the changes in the network visualization gratifying 
as a sign of the presence of other users thus increasing the sense of 
community among participants. Positive responses to [Q18] include

“Well, when I saw that a lot of people were borrowing from a 
particular [project], I’d check out that person’s code, because there 
must be something cool in there if that many people are using it.”

Figure 36. Responses 
to question 19a, “Does 
share reduce your 
barriers to sharing 
code”.



98

“Yes, it made me concentrate on this traveling code. I was more 
interested by sketches that had connections over sketches that hadn’t 
[...] it’s something I liked, to see day after day, the network build-
ing itself.”

“I liked the visualization as a way to gauge overall productivity 
and activity of the community but I think it was too abstract to 
tell me much about code.”

The negative responses to this question were not very 
detailed, with respondents saying that they simply did not use the 
feature that much. We also received feedback that the visualization 
could have been more helpful if it more quickly allowed for an 
individual to get more information about that project other than 
what it was connected to. As previously mentioned in our design 
and implementation chapter the ability to open a project directly 
from the visualization had to be removed just days before the start 
of the competition due to conflicts between the GUI toolkit and the 
graphics library we used to render the visualization. However the end 
of the comment quoted above does point to an opportunity to encode 
more information about a project in the visualization itself, possibly 
though the use of tooltips or even by parameterizing the design of the 
icons representing projects with project related features. Something 
we did not see was the use of the network visualization to discover 
previously unknown resources, this is not too surprising because, 
as the number of participants was fairly low, there was very little 
that would remain undiscovered for a long time or that could not 
be discovered by browsing through the lists in the file browser. We 
suspect that the utility of the network visualization would increase as 
the size of the community using share grows past the number where 
one can reasonably keep tabs of the activities of all the members of 
the community in one’s mind.



99

■We asked participants whether they felt that the feature set 
in share made them more productive (able to do things more quickly) 
[Q19b, Q23] or more creative (encouraged them to do things they 
otherwise may not have thought of ) [Q19c, Q24]. 

  

 

When asked to elaborate [Q23, Q24] on how it resulted in 
increased productivity or creativity we received the expected response 
that simply having a repository of code to draw from helped people 
get started more quickly, or otherwise more quickly solve their own 
[similar] problems. Participants also enjoyed seeing how others 
approached the same problem and found some inspiration for their 
own work. While we are unsure if this last point is more an effect of 
the competition’s pong constraint on making it more likely that you 
would see something that gives you an idea; we are confident, given 
our observation of collaborative practice among artists as documented 

Strongly Agree

Agree

Neither Agree nor Disagree

Disagree

Strongly Disagree

0 1 2 3 4 5 6

Strongly Agree

Agree

Neither Agree nor Disagree

Disagree

Strongly Disagree

0 1 2 3 4 5

Figure 37. Responses to question 19b, “Does share 
increase your ability to adress the task at hand”.

Figure 38. Responses 
to question 19c, 
“Does share increase 
your creativity in 
addressing the task at 
hand”.



100

in chapter two, that it would be similarly useful in less constrained 
settings. Participant elaborations included

“I’m a very beginner and share let me have a look at other people’s 
work and learn from them and their codes”

“Looking at what others are doing was a good starting point for 
generating ideas.”

“We were some[times] to be in front of the same problems (dealing 
with collisions, or mouse control for example) I found other paths 
helpful to deal with these.”

“I feel my abilities expanded when I could view everybody’s code.  
I could see other people’s solutions to problems arising in my own 
coding.”

“It opened a vast space of ideas, of different approaches, that ques-
tioned mine. Seeing some others build their sketch day after day 
was very interesting too, changes they made, it was like seeing the 
living process of a creative idea.”

However at least one respondent found the visibility of the 
other projects somewhat “overwhelming”, this individual was a bit 
intimidated by some of the work he saw being produced, saying 

“Though the wealth of code and projects is certainly inspiring, 
it’s also a little overwhelming.  Seeing everyone else’s ideas made 
mine seem pale in comparison.  Then again, I’ve been in a bit of a 
creative slump lately.”

Another user did mention the issue of signal vs. noise 
in browsing through the repository, saying “the number of ‘dead’ 
sketches made it hard to fully discover the real diamonds”. This is a 
common issue in systems providing so called “user generated content” 
but solutions to this kind of problem (such as tagging systems) 
continue to be developed in numerous online spaces. We had even 
implemented tagging features and limited tag based browsing, but 
removed this feature in favor of the bookmarking feature because we 
knew that the size of the repository would not be so large to make 
this a major problem, but it is certainly something that warrants 
further consideration in future iterations.

■When asked directly about disadvantages to working in 
share [Q27], all responses were related to the technical shortcomings 



101

of the text editing component in comparison to the native processing 
editor, this was not at all surprising as our prototype is definitely 
in an earlier stage of development than the processing IDE and we 
also focused on the social features that we were adding as opposed 
to code editing features which results in a somewhat impoverished 
code editor. None of the users remarked on disadvantages to the 
concepts in share or even the implementation of the attribution or 
visualization; given the self-selection of the participants this is not 
completely surprising, but we are pleased that our design choices did 
not turn people off the idea.

■One of our goals in the design of share was to minimize 
the disruption to regular work practice, when we asked participants 
whether they were able to work unencumbered by the notion of 

working within a community [Q23] responses were as follows. 

Strongly Agree

Agree

Neither Agree nor Disagree

Disagree

Strongly Disagree

0 1 2 3 4 5

 
Users generally felt that they were able to maintain their 

independence. 
■When we asked participants whether they would like 

to continue using share [Q24, Q25] one respondent said that they 
would not use share in future unless it was as technically capable (and 
polished) as the processing editor, another said that they would use it 
as a tool for collaboration (more traditional collaboration with known 
collaborators). All other respondents responded that they would 
consider using share in future. ■In response to the question on what 
kind of projects they would not consider working on in share [Q26] 
respondents said that they would not be able to work on commercial 
projects in share as their client relationships would likely prohibit 
this (or at least presumably take the decision out of their hands). But 

Figure 39. Responses 
to question 23, “When 
working in share, I 
feel I am able to work 
unencumbered by the 
notion of working 
within a community”.



102

more interestingly one user indicated that there were some projects 
they considered too personal or private to write in share, and would 
desire some way to mark certain sketches in share as private. While 
it is possible that this would ease the entry path to using a system 
like share, we are concerned that this would create a certain invisible 
asymmetry between projects and users and a decision along these 
lines would certainly require further consultation with the community 
using the tool (the current alternative suggests keeping projects you 
do not want public out of our software and just using the regular 
processing tool, but this does increase switching costs to our tool).

■In summary our deployment shows that the feature set is 
indeed useful to users, users valued being able to see what happened 
to their code and valued the display of attribution that mark the 
use of their contribution. Users also reported that they were more 
productive and more creative in working on their projects due to 
the presence of others source code and creative output. We did not 
see the use of the network visualization to discover resources in the 
network that would have otherwise one undiscovered, however this 
is likely because the total number of users was small enough that one 
could easily keep track of what everybody else was doing. We also 
were not able to determine the difference in value proposition that 
share presents with respect to beginners vs. more experienced users, 
nor how responses to share differ based on whether individuals use 
processing in their professional lives.



103



104

This thesis has articulated the practice of loosely bound 
cooperation, in which individuals are able to pursue distinct, 
independent goals yet assist each other along the way and has 
described the design of a novel programming environment that 
facilitates this form of cooperation among members of a community 
of practice of programmers. Our environment facilitates the creation 
of a code commons available to all member of the community and 
allows for very fine-grained attribution for the re-appropriation 
of code and provides visualization, visible to all members of the 
community, of the patterns of sharing latent to that community. It 
does this by automatically sharing all the code written in it with all 
other users of the software, as well as tracking copy-paste operations 
so that it can determine the source of any text in the repository, it 
also provides a means of explicit attribution for types of exchange 
that are not captured in copy paste operations. We have highlighted 
the importance of social factors in motivating participation in non-
market sharing economies as well as the peculiarities of motivating 
social exchange among very loosely associated groups of programmers 
that do not share a constraining project or vision to guide their 

Chapter 8. Conclusion & Future Work



105

collaboration. We have also demonstrated how the design of our 
system uses attribution and subtle markers of reputation to address 
these issues of motivation while being sensitive to the individual 
agency desired by independent programmers.

Situated within an economy of code sharing, our original 
research questions were:

What rewards does the visualization of attribution 1. 
provide to the original contributor? Do these rewards 
lower the barrier towards openly sharing ones code?

Are individuals able to track the re-appropriation of 2. 
code they have contributed? If so what are the benefits to 
doing so? 

Does working in such a system disrupt their regular 3. 
work practice, i.e. can users program without being 
encumbered by the notion of participating in a 
community? 

Our deployment with a small set of users shows great 
promise in the usefulness of the tool in response to these questions. 

The automatic tracking and public display of attribution 1. 
contribute to the good feelings of the participants as they 
feel recognized for their creative work and community 
contribution They also feel more at ease with reusing the 
work of others without feeling like they are stealing, with 
most of our users affirming that it reduced their barriers 
to sharing code.

Individuals were also able to track downstream 2. 
changes to contributions they had made and confirmed 
the pragmatic usefulness of doing so as well as the 
encouragement provided by seeing something they had 
created take on a life beyond their own projects. Share 
also alleviates some of the anxiety pressure associated 
with ‘publishing’ one’s work as it is constantly uploading 
works in progress for all users of the system. 

Almost all users reported that they did not feel disrupted 3. 
from their regular programming practice.



106

This thesis also sought to present a long-existing cultural 
context to support the kind of practice embodied in the design of our 
software, and we feel that we have provided ample evidence for the 
prevalence (and relevance) of re-appropriation in creative practice and 
the model of loosely bound cooperation both in the background work 
discussed and in the participants’ enthusiastic response to using our 
software.



107

future work

We see a number of features that could be improved or 
added to share and definitely space for more research to be done. 
Some include technical improvements that would allow the software 
to scale better with increasing numbers of users. Currently share 
downloads all updated projects and their data files. While this is 
likely fine for the code, downloading all the attached data files could 
potentially consume a great deal of hard drive space. Share should 
provide a mechanism that allows for some control over the amount of 
disk space being used. However there are a number of issues that go 
beyond stabilizing the current feature set.

Design Opportunities

Scaling the visualization. With an increasing number 
of users and links the visualization needs to be able to scale, we think 
this can be done primarily by filtering the set of ‘possibly interesting’ 
nodes when we expand nodes in the building of the tree, particularly 
in the use case of discovery of new resources. It is not necessary for 
one to see everything (as end users are not interested in analyzing 
network structure) but rather it is better to see something that is 
useful (even though it may not be exhaustive)

Bootstrapping discovery. Coupled with an algorithm 
that could automatically suggest related resources the network 
visualization has the potential to be used to bootstrap discovery 
of useful resources for users that are currently unconnected to the 
rest of the network. Existing work in the analyzing code similarity 
and automatically retrieving related snippets such as found in the 
Codebroker Project (Ye, Fischer 2002) or other forms of collaborative 
filtering could provide mechanisms for a users code to pull related 
resources to the users attention.

Functional Tags. We think that a set of functional tags, 
that is tags whose significance the system could recognize, much 
like the badges given in forums like StackOverflow but applied to 
projects, could be used to both provide a set of useful filters but 
also to encourage desirable behavior. For example tags like “work-
in-progress”, or “open-for-feedback” could be used to filter out or 
provide specific views for sketches in searches or visualizations. We 



108

arealso curious as to whether recognizing and promoting tags like 
“well-documented” could be leveraged to encourage behavior that 
is desirable to the community. We had ideas for these and a number 
of other functional tags and the infrastructure to implement them 
in share however we felt that the time span in the initial evaluation 
described in this thesis was too short to allow this behavior to emerge 
and be usefully documented.

Persistent Conversation Around Code. One of the 
challenges that we identified while developing the ideas in share was 
the separation between conversations about code (which happens on 
forums and irc channels) and the code itself. While it is an area we 
did not pursue deeply, apart from the inclusion of persistent comment 
threads per project, we think that it would be a rich area for further 
research. Either developing the IDE to better support in depth 
conversations around code or finding ways to integrate a system 
like share with existing online forum software, so that while reading 
discussions on the forums, that discussion is also available with the 
code.

Code Visualization. Our tool’s infrastructure also provides 
an opportunity to look at ways to create compact visualizations 
of source code features. Currently projects in the visualization are 
represented by a color coded “document” icon, this icon shows 
nothing about the project itself, there may be opportunity to display, 
within the icon, aspects of the code itself that could be useful to those 
browsing, for example relative amount of documentation or relevant 
software metrics.

Integration with existing community tools. This is 
certainly something that warrants further investigation, opportunities 
to link to existing identity or discussion systems, like web based 
profile pages allows further opportunity for identity and reputation 
development (and display) in a manner that is portable across 
community sites outside of our tool.

Research Questions

Some questions also remain unanswered and new ones 
emerge from doing this work. We did not collect enough data in 
this study to report on whether there are different responses to the 



109

features provided by share between those that have a commercial 
relationship to writing code and those who use processing more 
casually. A better understanding of how ‘commercial’ programmer-
artists approach working in sharing vs. market economies in the 
context of a system like share may shed light on new ways that the 
two economies may interact in future. Our data also was not able to 
say very much about the different value proposition share provides 
to individuals across levels of programming experience or whether 
individuals in different parts of the spectrum respond to different 
motivational factors, larger and longer term studies would be needed 
to tease out these differences if they indeed exist. 

Another interesting research question is whether working in 
a system like share changes how an individual writes their code, for 
example we imagine that it may be possible that a programmer seeing 
a particular piece of code they wrote becoming widely used, may be 
encouraged to improve the modularity of that code to make it easier 
for others to reuse.

Further investigation of the effect of a tool like share 
on individuals creative practice is also warranted, for example 
investigating the effect of our tool on the diversity of work created by 
a community is an interesting question.

We also see a potential for this tool in educational contexts 
and have received a number of inquiries from participants and visitors 
to our web site about the potential of using share in a class based 
settings. Examining the use of share in alternate settings such as 
classes, shared artists studios in addition to online communities is also 
something that we would be interested in pursuing in future. 



110

Appendix A

This appendix contains the survey given to participants in our 
evaluation



111

First Last

Less than 3 Months

3 - 6 Months

6 - 12 Months

12 - 18 Months

More than 18 Months

Less than 3 Months

3 - 6 Months

6 - 12 Months

12 - 18 Months

Share Experiment Questionnaire
Thanks for participating in the share experiment. This questionnaire is designed to help us understand your

personal experience of the project. This is part one of the questionnaire and is the core of the study. We are

particularly interested in the motivations for and barriers preventing sharing ones code. We are also interested

in how a tool like share may change how you work and your approach to your creative practice.

Please answer all questions to the best of your ability, every bit of information helps.

Thank you once again for your time and participation.

Biographical Information

1. Name *

2. Email *

3. Occupation *

4. Gender

Male

5. Share Username *

Programming Experience

Previous experience using processing or other programming languages.

6. How long have you been using processing? *

7. How long have you been programming? *

Share Experiment Questionnaire

1 of 6



112

More than 18 Months

Beginner Intermediate Advanced

Yes No

Yes No

Stranger Friend Colleague

Extremely Common

Very Common

Occasional

Rare

Never

7. How would you rate your experience level with processing? *

8. Do you use processing in relation to your professional work? *

Previous Code Sharing Experience

These questions are about your experience sharing/borrowing code before using share

9. Have you ever used code from another persons work in your

own projects? *

10. If yes to the previous question, what was your relationship

with the person(s) whose code you were using (Check all that

apply)

11. How common of an experience is this for you (using other

peoples code)?

12. Have you ever made your code publicly available to others? If

so, what motivated you to do so?

13. What, if any, are the reasons that would prevent you from

sharing your code publicly?

Share Experiment Questionnaire

2 of 6



113

Very Useful Somewhat Useful Not Useful

Browsing using the main window

Searching for code

Using the visualisation

Did not make use of others code

None of the above

The Share Experiment

Questions about your experience using share

14. How long did you use share for (in number of days?) *

15. How useful did you find it to have other peoples' source code

available to you? *

16. How did you discover other peoples' code? (Check all that

apply) *

17. Were you able to track and see what happened to code that

you produced? Was there any benefit to being able to do this? *

18. Were you able to use the visualisation to look at the network

around code other people produced? Was there any benefit to

being able to do this? *

Share Experiment Questionnaire

3 of 6



114

19. Evaluate the following statement. *

 
Strongly

Agree
Agree

Neither

Agree nor

Disagree

Disagreeq
Strongly

Disagree

19a. The attribution methods
provided by share lower the barriers I
have for sharing my code

1 2 3 4 5

19b. The features provided by share
increased my ability (made it easier)
to address the task at hand.

1 2 3 4 5

19c. The features provided by share
increased my creativity in addressing
the task at hand.

1 2 3 4 5

20. What value to you see in the means of attribution provided

by share? (i.e. code tracking, @saw references, network

visualisation and source based highlighting)

21. How do you feel the features provided by share affected your

ability to address the task at hand?

22. How do you feel the features provided by share affected your

creativity in addressing the task at hand?

Share Experiment Questionnaire

4 of 6



115

Yes No Other

23. Evaluate the following statement. *

 
Strongly

Agree
Agree

Neither

agree not

disagree

Disagree
Strongly

Disagree

When working in share, I feel I am
able to work independantly and
unencumbered by the notion of
working within a community

1 2 3 4 5

Beyond the Experiment

These questions address how you would feel about using a system like share on a more long term basis

24. Would you consider using share on a more long term basis? *

25. If yes to previous question, what are the main reasons you

would want to continue using it. If no, what are the main reasons

you would not want to continue using it.

26. Are there types of projects you would not consider working

in within share? If so what are the main reasons that would

prevent you from doing so?

Share Experiment Questionnaire

5 of 6



116

27. Are there any disadvantages to working in a system like

share.

Share Experiment Questionnaire

6 of 6



117



118

von Ahn, L., & Dabbish, L. (2004). Labeling images with a computer 
game. In CHI ‘04: Proceedings of the 2004 conference on Human 
factors in computing systems (pp. 326, 319). ACM Press. Retrieved 
August 8, 2009, from http://dx.doi.org/10.1145/985692.985733.

Anime Music Videos. (2006, April 25). Retrieved August 8, 2009, 
from http://networkedpublics.org/conference/anime_music_
videos.

Apache CouchDB: The CouchDB Project. (2008). Retrieved August 
8, 2009, from http://couchdb.apache.org/.

Apache Lucene - Overview. (2006). Retrieved August 8, 2009, from 
http://lucene.apache.org/java/docs/.

Attridge, D. (2004). The Cambridge companion to James Joyce. 
Cambridge University Press.

Bagozzi, R. P., & Dholakia, U. M. (2006). Open source software user 
communities: A study of participation in Linux user groups. 
Management Science, 52(7), 1099.

Benkler, Y. (2007). The Wealth of Networks. Yale University Press.

Bibliography



119

Bullough, G. (1957). Narrative and dramatic sources of Shakespeare. New 
York: Columbia University Press.

Carter, S. (2001). Takeover. On The Blueprint [CD]. New York: Roc-
A-Fella/Island Def Jam.

Carter, S. (2003). What more can I say. On The Black Album [CD]. 
New York: Roc-A-Fella/Island Def Jam.

Cox, C., & Warner, D. (2004). Audio culture : readings in modern music. 
New York: Continuum.

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified Data 
Processing on Large Clusters. In Sixth Symposium on Operating 
System Design and Implementation. December.

Delicious. (n.d). Retrieved August 8, 2009, from http://delicious.
com/.

Ding, A. (2006). Recombinant Design: Leveraging Process Capture for 
Collective Creativity. Massachusetts Institute of Technology.

Donath, J. S. (1999). Identity and deception in the virtual community. 
Communities in cyberspace, 29–59.

Fischer, G., Giaccardi, E., Eden, H., Sugimoto, M., & Ye, Y. (2005). 
Beyond binary choices: integrating individual and social creativity. 
Int. J. Hum.-Comput. Stud., 63(4-5), 482-512.

Fulford-Jones, W. (2009). Sampling. Grove Music Online. Retrieved 
August 1, 2009, from http://www.oxfordmusiconline.com/
subscriber/article/grove/music/47228.

Friedman, M. (Ed.). (1982). De Stijl, 1917-1931 : Visions of Utopia. New 
York: Abbeville Press.

Ghosh, R. A. (2005). Understanding free software developers: 
Findings from the FLOSS study. Perspectives on free and open 
source software, 23–45.

Green, J., Thorington, H., & Riel, M. (2004, July). Networked_
Performance — About. Retrieved August 8, 2009, from http://
turbulence.org/blog/about/.

Hars, A., & Ou, S. (2002). Working for free? Motivations for 
participating in open-source projects. International Journal of 
Electronic Commerce, 6(3), 25–39.

Heer, J., Card, S. K., & Landay, J. A. (2005). Prefuse: a toolkit for 



120

interactive information visualization. In Proceedings of the SIGCHI 
conference on Human factors in computing systems (pp. 421–430).

Kristeva, J. (1986). The Kristeva reader. New York: Columbia University 
Press.

von Krogh, G., & von Hippel, E. (2006). The promise of research on 
open source software. Management science, 52(7), 975.

Lakhani, K., & Wolf, R. (n.d.). Why Hackers Do What They Do: 
Understanding Motivation and Effort in Free/Open Source 
Software Projects. Perspectives in Free and Open Source Software,( J. 
Feller, B. Fitzgerald, S. Hissam, and K. Lakhani, eds.), MIT Press, 
Cambridge, MA.

Lakhani, K. R., & Hippel, E. V. (2003). How open source software 
works: Research Policy, 32(6), 923 - 943. doi: DOI: 10.1016/S0048-
7333(02)00095-1.

Lave, J., & Wenger, E. (1991). Situated Learning : Legitimate 
Peripheral Participation (Learning in Doing: Social, Cognitive 
& Computational Perspectives). Cambridge University Press. 
Retrieved August 8, 2009, from http://www.amazon.ca/exec/
obidos/redirect?tag=citeulike09-20&path=ASIN/0521423740.

Lenz v. Universal | Electronic Frontier Foundation. (n.d.). . Retrieved 
August 9, 2009, from http://www.eff.org/cases/lenz-v-universal.

Lerner, J., & Tirole, J. (2005). The scope of open source licensing. 
Journal of Law, Economics, and Organization, 21(1), 20–56.

Lessig, L. (2008). Remix : making art and commerce thrive in the hybrid 
economy. New York: Penguin Press.

Lethem, J. (2007). The ecstasy of influence: A plagiarism, (Harper’s 
Magazine). Retrieved July 3, 2009, from http://www.harpers.org/
archive/2007/02/0081387.

Licenses - Creative Commons. (2009). Retrieved August 8, 2009, 
from http://creativecommons.org/about/licenses/.

Maar, M. (2005). The Two Lolitas. Verso Books.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, 
M. (2004). Scratch: a sneak preview. In Creating, Connecting 
and Collaborating through Computing, 2004. Proceedings. Second 
International Conference on (pp. 104-109). Presented at the 
Creating, Connecting and Collaborating through Computing, 



121

2004. Proceedings. Second International Conference on. doi: 
10.1109/C5.2004.1314376.

Manovich, L. (2005). Remix and remixability. Retrieved July 27, 2009, 
from http://rhizome.org/discuss/view/19303#36752.

Manovich, L. (2001). The language of new media. The MIT Press.

Manovich, L. (2007). What Comes After Remix? Retrieved July 27, 
2009, from http://manovich.net/DOCS/remix_2007_2.doc.

Metz, G. (1989). Sources of four plays ascribed to Shakespeare. Columbia: 
University of Missouri Press.

Monroy-Hernández, A. (n.d.). ScratchR : a platform for sharing user-
generated programmable media. Thesis, . Retrieved August 8, 2009, 
from http://dspace.mit.edu/handle/1721.1/42977

Muir, K. (1978). The sources of Shakespeare’s plays. New Haven: Yale 
University Press.

OPENSTUDIO. (n.d). Retrieved August 8, 2009, from http://
openstudio.media.mit.edu/.

Oswald, J. (1990, October 2). plunderphonics press release. Retrieved 
July 9, 2009, from http://www.plunderphonics.com/xhtml/
xnegation.html.

Oswald, J. (1985). Plunderphonics, or Audio Piracy as a 
Compositional Prerogative. Retrieved July 9, 2009, from http://
www.plunderphonics.com/xhtml/xplunder.html.

Overy, P. (1969). De Stijl. London: Studio Vista.

Raymond, E. S. (n.d.). The cathedral and the bazaar, 1997. Retrieved 
from http://www.catb.org/~esr/writings/cathedral-bazaar/
cathedral-bazaar/.

Reas, C., & Fry, B. (2007). Processing: A Programming Handbook for 
Visual Designers and Artists. The MIT Press.

Reese, B. (2005). I’m a hustla. On I’m a hustla [CD]. Full Surface/Ruff 
Ryders/J Records.

Stack Overflow. (2009). Retrieved August 8, 2009, from http://
stackoverflow.com/.

Stallman, R. (1998). The GNU Project. Retrieved October 27, 2008, 
from http://www.gnu.org/gnu/thegnuproject.html.



122

Stanford Copyright & Fair Use - Summaries of Fair Use Cases. 
(n.d.). . Retrieved August 12, 2009, from http://fairuse.stanford.
edu/Copyright_and_Fair_Use_Overview/chapter9/9-c.html.

Stanford Copyright & Fair Use Center. (2005). . Retrieved August 9, 
2009, from http://fairuse.stanford.edu/index.html.

The Competitive Spectrum - Yahoo! Design Pattern Library. (n.d.). 
. Retrieved July 28, 2009, from http://developer.yahoo.com/
ypatterns/pattern.php?pattern=competitive.

The Competitive Spectrum Pattern - Yahoo! Design Pattern Library. 
(n.d.). . Retrieved August 12, 2009, from http://developer.yahoo.
com/ypatterns/pattern.php?pattern=competitive.

The Free Software Definition. (n.d.). Retrieved July 11, 2009, from 
http://www.gnu.org/philosophy/free-sw.html#exportcontrol.

The GNU General Public License. (2007, June 29). . Retrieved August 
8, 2009, from http://www.gnu.org/copyleft/gpl.html.

Torvalds, L., & Diamond, D. (2002). Just for Fun. Harper Collins.

Torvalds, L. (1991). What would you like to see most in minix? 
- comp.os.minix | Google Groups. Retrieved July 21, 2009, 
from http://groups.google.com/group/comp.os.minix/msg/
b5fb8c0380d0edae.

U.S. Copyright Office - Copyright Law. (n.d.). Retrieved July 9, 2009, 
from http://www.copyright.gov/title17/92chap1.html#106.

U.S. Copyright Office - Fair Use. (2009). Retrieved August 9, 2009, 
from http://www.copyright.gov/fls/fl102.html.

United States Copyright Office A Brief Introduction and History. 
(2009). Retrieved July 8, 2009, from http://www.copyright.gov/
circs/circ1a.html.

Wenger, E. (, n.d). Communities of practice. Retrieved October 25, 
2008, from http://www.ewenger.com/theory/index.htm.

White, B. (1996). Impressionists side by side : their friendships, rivalries, 
and artistic exchanges (1st ed.). New York: Random House Inc.

Yahoo! Design Pattern Library - Reputation. (n.d.). Retrieved July 
28, 2009, from http://developer.yahoo.com/ypatterns/parent.
php?pattern=reputation.

Ye, Y., & Fischer, G. (2002). Information delivery in support of 



123

learning reusable software components on demand. In Proceedings 
of the 7th international conference on Intelligent user interfaces (pp. 
159-166). ACM Press New York, NY, USA.

YouTube - Broadcast Yourself. (2005, February 15). Retrieved August 
8, 2009, from http://www.youtube.com/.


	Abstract
	Acknowledgements
	Chapter 1. Introduction
	Design Proposal & Hypothesis
	Why Art?

	Outline
	Chapter 2. Sampling & Collaborative Practice in Cultural Production: An Art-Historical Perspective
	Artist Collectives
	The Impressionists
	De Stijl

	Sampling 
	Literature
	Music
	DJ Culture & Intertextuality in Hip-Hop

	Chapter 3. Creativity & Copyright Law: Tensions of ownership
	Fallout
	Plunderphonics
	 YouTube
	What about Fair Use?

	Copyleft
	Chapter 4. New Economies: The Sharing Economy & Commons Based Peer Production
	Political Affordances of Network Technology
	Reward & Motivation in Free and Open Source Software
	Loosely Bound Cooperation
	Development Across Project Boundaries
	Challenges Across Project Boundaries

	Processing, The Community; Forums and Other Existing Tools
	Chapter 5. Related Work
	Scratch
	OPENSTUDIO
	GitHub
	Chapter 6. Design & Implementation
	Share Server
	Share Client
	File Browser
	Code Search
	Editor
	Permissions
	Explicit References
	Comments 
	Bookmarks
	Synchronization
	The Network Browser
	Runtime
	Security Concerns

	Chapter 7. The Share Experiment: Results & Discussion
	Experiment Design
	Recruitment and Participant Demographics
	Prior Code Sharing Experience
	Experience Using Share
	Quantitative data
	Explicit (@saw) References
	Survey Response

	Chapter 8. Conclusion & Future Work
	Future Work
	Design Opportunities
	Research Questions

	Appendix A
	Bibliography

